SINGLE-USER
HP BASIC
USER MANUAL

Extract from

"A Pocket Guide to Hewlett-Packard Computers"

Hewlett-Packard Company, July 1970

PDF TABLE OF CONTENTS
SECTION PDF
INTRODUCTION 10
CHAPTER 1 A BASIC PRIMER 11
1.1 AN EXAMPLE 11
1.2 FORMULAS 14
1.3 LOOPS 17
1.4 ARRAYS 20
1.5 USE OF THE SYSTEM 22
1.6 ERRORS & DEBUGGING 23
1.7 SUMMARY OF STATEMENTS 27
CHAPTER 2 ADVANCED BASIC 31
21 MORE ABOUT PRINT 31
2.2 FUNCTIONS & DEF 34
23 GOSUB & RETURN 36
24 INPUT 37
2.5 SOME MISCELLANEOUS STATEMENTS 38
26 MATRICES 40
2.7 ERROR CODES 46
APPENDIX A USING THE HP BASIC SYSTEM 49
APPENDIX B CALL & WAIT STATEMENTS 51
APPENDIX C LOGICAL OPERATORS 55
APPENDIX D BASIC SYNTAX IN BNF 56
APPENDIX E PREPARE-BASIC-SYSTEM PROGRAM (PBS) 60

bh / 2025-06-2




HEWLETT hp. PACKARD

A Pocket Guide to
Hewlett-Packard Computers

2.0 06 0 6 © 0 O

LS



PREFACE
—

This manual combines in one convenient publication comprehensive
hardware specifications for Hewlett-Packard 2100 Series Computers
and programmer's reference manuals for the principal software
systems. Software manuals included are FORTRAN, BASIC, Assem-
bler, Basic Control System and Program Library. System designers
and programmers will find this book a handy, permanent reference.
Potential users will find the technical descriptions valuable for
evaluating Hewlett-Packard computers and supporting software.
Since Hewlett-Packard hardware and software specifications are
subject to change, the information in this manual is intended to be
used strictly as a guide and does not necessarily represent current
policies and products supported by Hewlett-Packard.

Further information on Hewlett-Packard computer products is
available from your local Hewlett-Packard field office; one of more
than 130 Sales and Service Offices throughout the world.

Or write Hewlett-Packard, 1501 Page Mill Road, Palo Alto,
California 94304; Europe, 1217 Meyrin-Geneva, Switzerland.




Here is a family of computers with the power to solve problems for
engineers and scientists — at a cost that makes them uniquely practical.

2114 2116

000NGOOOOOONOOSGOIOGODOS

2115

LESAN 8 SRS B v
.06 000000

5666 6BE

Backed up by software which is compatible to all three computers.

IR R RN NN NN




vi

Ilustrative of HP 2116 Computer power is its use in HP Series 2000
Time Sharing Systems. Here, up to 32 users may communicate with
the computer simultaneously, in conversational BASIC language.




52000
e with
guage,

CONTENTS

—

Specifications and Basic Operation Manual

Assembler Reference Manual

Basic Control System Reference Manual

FORTRAN Reference Manual

Program Library Reference Manual

BASIC Language Reference Manual




BASIC Language Reference Manual




“

The development of the BASIC Language and the original version of this manual on
BASIC were supported in part by the National Science Foundation under terms of
Grant NSF GE 3864 to Dartmouth College. Under this grant, Dartmouth College,
under the direction of Professors John G. Kemeny and Thomas E. Kurtz, developed
the BASIC Language and a compiler for oreration under a time-sharing system in
use at Dartmouth.

This printing of this manual by Hewlett-Packard does not necessarily constitute
endorsement of Hewlett-Packard products by Dartmouth College.

@ Copyright 1968 by Trustees of Dartmouth College. Reproduced
with the permission of the Trustees of Dartmouth College.

“ s S w2

ke e -



CONTENTS
e e——————— s S— S S T e S

INTRODUCTION v
CHAPTER 1 A BASIC PRIMER 1-1
1.1 An Example 1-1

1.2 Formulas 1-4

1.3 Loops 1-7

1.4 Arrays 1-10

1.5 Use of The System 1-12

1.6 Errors and Debugging 1-13

1.7 Summary of Elementary BASIC Statements 1-17

1Fely o LESE 1-17

1.7.2 READ and DATA 1-17

1.7.3 PRINT 1-18

1.7.4 GO TO 1-19

1.7.5 IF = THEN 1-19

1.7.6 FOR and NEXT 1-19

1.9.7  DIM 1-20

1.7.8 END 1-20

CHAPTER 2 ADVANCED BASIC 2-1
2.1 More About PRINT 2-1

2.2 Functions and DEF 2-4

2.2. 1 INE 2-4

2.2.2 RND 2-4

2.2.3 BGN 2-6

2.2.4 DEF 2-6

2.3 GOSUB AND RETURN 2-6

2.4 INPUT 2-17

2.5 Some Miscellaneous Statements 2-8

2.5.1 STOR 2-8

2.5.2 REM 2-8

2.5.3 RESTORE 2-9

2.5.4 COM 2-9
2.6 Matrices 2-10
2.7 Error Codes 2-16

APPENDIX A USING THE HP BASIC SYSTEM A-1
APPENDIX B CALL AND WAIT STATEMENTS B-1
APPENDIX C LOGICAL OPERATORS IN THE BASIC LANGUAGE C-1
APPENDIX D BASIC SYNTAX IN BACKUS NORMAL FORM D-1
APPENDIX E PREPARE BASIC SYSTEM PROGRAM (PBS) E-1

BASIC i




INTRODUCTION

T R I P SR T N e R O A e e e e s e e T Y,
»

This publication is a reference manual for using the HP BASIC System with HP com-
puters. It includes both the elements of the language and the information required
to operate the system on the computer. The minimum configuration on which the
HP BASIC Compiler will run is:

HP 2116B, 2115A, or 2114A Computer with 8196 words of memory
HP 2752A Teleprinter

WHAT IS A PROGRAM ?

A program is a set of directions, or a recipe, that is used to tell a computer how
to provide an answer to some problem. It usually starts with the given data as the
ingredients, contains a set of instructions to be performed or carried out in a cer-
tain order, and ends up with a set of answers as the cake. And, as with ordinary
cakes, if you make a mistake in your program, you will end up with something else
- perhaps hash!

Any program must fulfill two requirements before it can be carried out. The first
is that it must be presented in a language that is understood by the "computer'. If
the program is a set of instructions for solving a system of linear equations and the
"computer" is an English-speaking person, the program will be presented in some
combination of mathematical notation and English. If the "computer' is a French-
speaking person, the program must be in his language; and if the '"computer"
is a high-speed digital computer, the program must be presented in a language
which the computer "understands"'.

The second requirement for all programs is that they must be completely and pre-
cisely stated. This requirement is crucial when dealing with a digital computer
which has no ability to infer what you mean - it does what you tell it to do, not what
ycu meant to tell it.

We are, of course, talking about programs which provide numerical answers to
numerical problems. It is easy to program in the English language, but such a
program poses great difficulties for the computer because English isTich with am-
biguities and redundancies, those qualities which make poetry possible but com-
puting impossible. Instead, you present your program in a language which resembles
ordinary mathematical notation, which has a simple vocabulary and grammer, and
which permits a complete and precise specification of your program. The language
you will use is BASIC which is, at the same time, precise, simple and easy to under-
stand.

A first introduction to writing a BASIC program is given in Chapter 1. This chapter
includes all that you will need to know to write a wide variety of useful and inter-
esting programs. Chapter 2 deals with more advanced computer techniques, and
the Appendices contain a variety of reference materials.

it BASIC

- T WD 5 T et A Wl S BB v

o LA . S B



. A BASIC PRIMER 1
e O S S S S T T S A S,

11 AN EXAMPLE
The following example is a complete BASIC program for solving a system of two
simultaneous linear equations in two variables:

ax+by=c

dx +ey=f{

And then solving two different systems, each differing from this system only in the
constants ¢ and f.

You should be able to solve this system, if ae -bd is not equal to 0, to find that:

ce-bf af-cd
and y =

ae-bd ae-hd

If ae -bd = 0, there is either no solution or there are infinitely many, but there is
no unique solution. If you are rusty on solving such systems, take our word for it
that this is correct. For now, we want you to understand the BASIC program for
solving this system.

Study this example carefully - in most cases the purpose of eachline in the program
is self-evident - and then read the commentary and explanation.

10 READ A, B, D, E
15 LETG=A*E-B*D
20 IF G=0 THEN 65
30 READ C, F
37 LET X = (C*E - B*F)/G
42 LET Y = (A*F - C*D)/G
55 PRINT X, Y
60 GO TO 30
65 PRINT "NO UNIQUE SOLUTION"
70 DATA 1, 2, 4
80 DATA 2, -7, 5
85 DATA 1, 3, 4, -1
90 END
We immediately observe several things about this sample program. First, we see

that the program uses only capital letters, since the teletypewriter has only capital
letters.

BASIC 1-1




A second observation is that each line of the program begins with a number. These
numbers are called line numbers and serve to identify the lines, each of which is
called a statement. Thus, a program is made up of statements, most of which are
instructions to the computer. Line numbers also serve to specify the order in
which the statements are to be performed by the computer. This means that you
may type your program in any order. Before the program is run, the computer
sorts out and edits the program, putting the statements into the order specified by
their line numbers. (This editing process facilitates the correcting and changing of
programs, as we shall explain later.)

A third observation is that each statement starts, after its line number, with an
English word. This word denotes the type of the statement. There are several
types of statements in BASIC, nine of which are discussed in this chapter. Seven
of these nine appear in the sample program of this section.

A fourth observation, not at all obvious from the program, is that spaces have no
significance in BASIC, except in messages enclosed in quotation marks which are
to be printed out, as in line number 65 above. Thus, spaces may be used, or not
used, at will to "pretty up' a program and make it more readable. Statement 10
could have been typed as 10READA, B, D, E and statement 15 as 15 LETG=A*E-B*D.

With this preface, let us go through the example, step by step. The first statement,
10, is a READ statement. It must be accompanied by one or more DATA statements.
When the computer encounters a READ statement while executing your program, it
will cause the variables listed after the READ to be given values according to the
next available numbers in the DATA statements. In the example, we read A in
statement 10 and assign the value 1 to it from statement 70 and, similarly with B
and 2, and with D and 4. At this point, we have exhausted the available data in
statement 70, but there is more in statement 80, and we pick up from it the number
2 to be assigned to E.

We next go to statement 15, which is a LET statement, and first encounter a formula
to be evaluated. (The asterisk '""*'" is obviously used to denote multiplication.) In
this statement we direct the computer to compute the value of AE - BD, and to call
the result G. In general, a LET statement directs the computer to set a variable
equal to the formula on the right side of the equals sign. We know that if G is equal
to zero, the system has no unique solution. Therefore, we next ask, in line 20, if
G is equal to zero. If the computer discovers a ''yes' answer to the question, itis
directed to go to line 65, where it prints "NO UNIQUE SOLUTION". From this
point, it would go to the next statement. But lines 70, 80, and 85 give it no instruc-
tions, since DATA statements are not "executed', and it then goes to line 90 which
tells it to "END" the program.

If the answer to the question "Is G equal to zero?'" is "no", as it is in this example,
the computer goes on to the next statement, in this case 30. (Thus, an IF-THEN
tells the computer where to go if the "IF" condition is met, but to go on to the next
statement if it is not met.) The computer is now directed to read the next two en-
tries from the DATA statements, -7 and 5, (both are in statement 80) and to assign
them to C and F respectively. The computer is now ready to solve the system

X+ 2y = =1
4x + 2y = 5.

1-2 BASIC

T R G S 0 Al W A 0 6




In statements 37 and 42, we direct the computer to compute the value of X and Y
according to the formulas provided. Note that we must use parentheses to indicate
that CE - BF is divided by G; without parentheses, only BF would be divided by G
and the computer would let X = CE -BF.

G

The computer is told to print the two values computed, that of X and that of Y, in
line 55. Having done this, it moves on to line 60 where it is directed back to line
30. If there are additional numbers in the DATA statements, as there are here in
85. the computer is told in line 30 to take the next one and assign it to C, and the
one after that to F. Thus, the computer is now ready to solve the system

x+2y=1

4x + 2y = 3.

I

As before, it finds the solution in 37 and 42 and prints them out in 55, and then is
directed in 60 to go back to 30.

In line 30 the computer reads two more values, 4 and -7, which it finds in line 85.
It then proceeds to solve the system

x+2y=4
4x + 2y = -1

and to print out the solutions. It is directed back again to 30, but there are no more
pairs of numbers available for C and F inthe DATA statements. The computer then

informs you that it is out of data, printing on the paper in your teletypewriter
"ERROR 56 IN LINE 30"

For a moment, let us look at the importance of the various statements. For ex-
ample, what would have happened if we had omitted line number 55? The answer
is simple: the computer would have solved the three systems and then told us when
it was out of data. However, since it was not asked to tell us (PRINT) its answers,
it would not do it, and the solutions would be the computer's secret. What would
have happened if we had left out line 20? In this problem just solved nothing would
have happened. But, if G were equal to zero, we would have set the computer the
impossible task of dividing by zero, and it would tell us so, printing "ERROR 69 IN
LINE 37'". Had we left out statement 60, the computer would have solved the first
system, printed out the values of X and Y, and then gone on to line 65 where it would
be directed to print "NO UNIQUE SOLUTION". It would do this and then stop.

One very natural question arises from the seemingly arbitrary numbering of the
statements: why this selection of line numbers? The answer is that the particular
choice of line numbers is arbitrary, as long as the statements are numbered in the
order which we want the machine tofollow in executing the program. We could have
numbered the statements 1, 2, 3, ..., 13, although we do not recommend this num-
bering. We would normally number the statements 14, 20, 30, ..., 130, "Weas
the numbers such a distance apart so that we can later insert additional statements
if we find that we have forgotten them in writing the program originally. Thus, if
we find that we have left out two statements between those numbered 40 and 50, we
can give themany twonumbers between 40 and 50 - say 44 and 46; and in the editing
and sorting process, the computer will put them in their proper place.

BASIC 1-3




Another question arises from the seemingly arbitrary placing of the elements of
data in the DATA statements: why place them as they have been in the sample pro-
gram? Here again the choice is arbitrary and we need only put the numbers in the
order that we want them read (the first for A, the second for B, the third for D, the
fourth for E, the fifth for C, the sixth for F, the seventh for the next €, ete.) In
place of the three statements numbered 70, 80, and 85, we could have put

S DATA L 2, 4, 8 <7, 51, 3, & <1
or we could have written, perhaps more naturally,

70 DATA 1, 2, 4, 2
75 DATA -7, 5

80 DATA 1, 3

85 DATA 4, -7

to indicate that the coefficients appear in the first data statement and the various
pairs of right-hand constants appear in the subsequent statements.

The program and the resulting run is shown below exactly as it appears on the tele-
typewriter.

READY
18 READ A, B» D» E
15 LET @ = A * E = B * D

28 IF G = @ THEN 65

30 READ C» F

37 LET X = C( C = E.~ B ¥ F ); £ 6
42 LET Y = (A *F -C=*D) /G

SS PRINT X, Y

6@ GO TO 30

65 PRINT ""NO UNIQUE SOLUTION'"
70 DATA 1, 2, 4

80 DATA 2, -7» S

85 DATA 1, 3, 4, -7

9@ END
RUN

4 -95

« 666667 « 166667
=3:66667 3.83333

ERROR 56 IN LINE 30

After typing the program, we type RUN followed by a CARRIAGE RETURN. Up to
this point the computer stores the program and checks the form of the statements.
It is this command which directs the computer to execute your program. The
message out-of-data error code here may be ignored. However, in some cases it
indicates an error in the program: for more details see Sec. 1.7.2.

1.2 FORMULAS

The computer can perform a great many operations; it can add, subtract, multiply,
divide, extract square roots, raise a number to a power, and find the sine of a num-

1-4 BASIC

- A E RS R R D i S S, S BB s e

ot o e S > A “F



ber (on an angle measured in radians), etc. - and we shall now learn how to tell the
computer to perform these various operations and to perform them in the order that
we want them done.

The computer performs its primary function (that of computation) by evaluating
formulas which are supplied in a program. These formulas are very similar to
those used in standard mathematical calculation, with the exception that all BASIC
formulas must be written on a single line. Five arithmetic operations can be used
to write a formula, and these are listed in the following table:

Symbol Example Meaning
+ A+ B Addition (add B to A)
- A-B Subtraction (subtract B from A)
* A*B Multiplication (multiply B by A)
/ A/ B Division (divide A by B)
- X 42 Raise to the power (find X2)

We must be careful with parentheses to make sure that we group together those
things which we want together. We must also understand the order in which the
computer does its work. For example, if we type A+ B * C 4+ D, the computer will
first raise C to the power D, multiply this result by B, and then add A to the re-
sulting product. This is the same convention as is usual for A + B*CD. If this is
not the order intended, then we must use parentheses to indicate a different order.
For example, if it is the product of B and C that we want raised to the power D, we
must write A + (B * C) 4 D; or, if we want to multiply A + B by C to the power D,
we write (A + B) * C 4 D. We could even add A to B, multiply their sum by C, and
raise the product to the power D by writing ((A + B) * C) 4 D. The order of pri-
orities is summarized in the following rules:

1 The formula inside parentheses is computed before the parenthe-
sized quantity is used in further computations.

2. In the absence of parentheses in a formula involving addition,
multiplication, and the raising of a number to the power, the com-
puter first raises the number to the power, then performs the
multiplication, and the addition comes last. Division has the
same priority as multiplication, and subtraction the same as

addition.

33 In the absence of parenthesesin a formula involving operations of
the same priority, the operations are performed from left to
right.

These rules are illustrated in the previous example. The rules also tell us that the
computer, faced with A - B - C, will (as usual) subtract B from A and then C from
their difference: faced with A/B/C, it will divide A by B and that quotient by C.
Given A % B 4 C, the computer will raise the number A to the power B and take the
resulting number and raise it to the power C. If there is any question in your mind
about the priority, put in more parentheses to eliminate possible ambiguities.

BASIC 1-5




St

In addition to these five arithmetic operations, the computer can evaluate several
mathematical functions. These functions are given special 3-letter English names,
as the following list shows:

Functions Interpretation

SIN (X) Find the sine of X X interpreted as

COS (X) Find the cosine of X a number, or as

TAN (X) Find the tangent of X an angle measuredin
radians

ATN (X) Find the arctangent of X

EXP (X) Find eX

LOG (X) Find the natural logarithm of X (In X)
ABS (X) Find the absolute value of X (|X])
SQR (X)  Find the square root of X ( / X)

Three other functions are also available in BASIC: INT, RND, and SGN; these are
reserved for explanation in Chapter 2. In place of X, we may substitute any formu-
la or any number in parentheses following any of these formulas. For example, we
may ask the computer to find /4 + X3 by writing SQR (4 + X%3), or the arctangent
of 3X -2eX + 8 by writing ATN (3 * X - 2 * EXP (X) + 8).

If, sitting at the teletypwriter, you need the value of (5 )17 you can write the two-
line program 6

10 PRINT (5/6) ¢ 17
20 END

and the computer will find the decimal form of this number and print it out in less
than it took you to type the program.

Since we have mentioned numbers and variables, we should be sure that we under-
stand how to write numbers for the computer and what variables are allowed. A
number may be positive or negative and it may contain up to approximately seven
significant digits, but it must be expressed in decimal form. For example, all of
the following are numbers in BASIC: 2, -3.675, 1234567, -.7654321, and 483.4156.
The following are not numbers in BASIC: 14/3 and /7. We may ask the computer
to find the decimal expansion of 14/3 or V7, and to do something with the resulting
number, but we may not include either in a list of DATA. We gain further flexi-
bility by use of the letter E, which stands for "times ten to the power'. Thus, we
may write .001234567 in a form acceptable to the computer in any of several forms:
.1234567E-2 or 123456 7E-9 or 1234.56789E-6. We may write ten million as 1E7
(or 1E + 7) and 1965 as 1.965E3 (or 1.965E + 3). We do not write E7 as a number,
but must write 1E7 to indicate that it is 1 that is multiplied by 107. All numbers
are represented in the computer by two 16-bit words. The exponent and its sign
are eight bits; the fraction and its sign are twenty-four bits. They have a range
in magnitude of approximately 10-38 to 1038 and may assume positive, negative or
zero values. If a fraction is negative the number is stored in two's complement
form. A zero value is stored as all zero bits. If a number is too large, the com-

1-6 BASIC

B ey,

- Bl e
"2 =

B b A e L s



puter prints "ERROR 65 IN LINE nn'' and replaces it with the largest representable
number of the same sign. If a number is too small, the computer prints "ERROR
66 IN LINE nn' and replaces it with zero.

A numerical variable in BASIC is denoted by any letter, or by any letter followed
by a single digit. Thus, the computer will interpret E7 as a variable, along with A,
X. N5. 10, and O1. A variable in BASIC stands for a number, usually one that is
not known to the programmer at the time the program was written. Variables are
given or assigned values by LET, READ, or INPUT statements. The value so as-
signed will not change until the next time a LET, READ, or INPUT statement is
encountered with a value for that variable. However, all variables are set to "un-
defined" before aRUN. Thus, it is always necessary to assign a value to a variable
before using the variable in a computation. Failure to do so will cause the computer
to print "ERROR 50 IN LINE nn'".

Six other mathematical symbols are provided for in BASIC, symbols of relation,
and these areused in IF-THEN statements where it is necessary to compare values.
An example of the use of these relation symbols was given in the sample program
in Section 1.

Any of the following six standard relations may be used:

Symbol Example Meaning
= Ax=B Is equal to (A is equal to B)
= A< B Is less than (A is less than B)
<= A <=8 Is less than or equal to (A is less than
or equal to B)
> A> B Is greater than (A is greater than B)
>= A>=B Is greater than or equal to (A isgreat-

er than or equal to B)
# A# B Is not equal to (A is not equal to B)

1.3 LOOPS

We are frequently interested in writing a program in which one or more portions
are performed not just once but a number of times, perhaps with slight changes
each time. In order to write the simplest program, the one in which this portion
tobe repeated is written just once, we use the programming device known as a loop.

The programs which use loops can, perhaps, be best illustrated and explained by
two programs for the simple task of printing out a table of the first 100 positive in-
tegers together with the square root of each. Without a loop, our program would be
101 lines long and read:

10 PRINT 1, SQR (1)
20 PRINT 2, SQR (2)
30 PRINT 3, SQR (3)

BASIC 1-7




990 PRINT 99, SQR (99)
1000 PRINT 100, SQR (100)
1010 END

With the following program, using one type of loop, we can obtain the same table
with far fewer lines of instruction, 5 instead of 101:

10 LETX =1

20 PRINT X, SQR (X)

30 LETX=X+1

40 IF X < =100 THEN 20
50 END

Statement 10 gives the value of 1 to X and "initializes" the loop. In line 20 both 1
and its square root are printed. Then, in line 30, X is increased by 1, to 2. Line
40 asks whether X is less than or equal to 100; an affirmative answer directs the
computer back to line 20. Here it prints 2 and V2, and goes to 30. Again X is in-
creased by 1, this time to 3, and at 40 it goes back to 20. This process is repeated
line 20 (print 3 and V3), line 30 (X = 4), line 40 (since 4 < 100 go back to line 20),
etc - until the loop has been traversed 100 times. Then, after it has printed 100
and its square root, X becomes 101. The computer now receives a negative answer
to the question in line 40 (X is greater than 100, not less than or equal to it), does
not return to 20 but moves on to line 50, and ends the program. All loops contain
four characteristics; initialization (line 10), the body (line 20), modification (line
30), and an exit test (line 40). Because loops are so important and because loops of
the type just illustrated arise so often, BASIC provides two statements to specify a
loop even more simply. They are the FOR and NEXT statements, and their use is
illustrated in the program:

10 FOR X =1 TO 100

20 PRINT X, SQR (X)

30 NEXT X

50 END
In line 10, X is set equal to 1, and a test is set up, like that of line 40 above. Line
30 carries out two tasks: X is increased by 1, and the test is carried out to deter-

mine whether to go back to 20 or go on. Thus lines 10 and 30 take the place of lines
10, 30, and 40 in the previous program - and they are easier to use.

Note that the value of X is increased by 1 each time we go through the loop. If we
wanted a different increase, we could specify it by writing

10 FOR X =1 TO 100 STEP 5

and the computer would assign 1 to X on the first time through the loop, 6 to X on
the second time through, 11 on the third time, and 96 on the last time. Another
step of 5 would take X beyond 100, so the program would proceed to the end after
printing 96 and its square root. The STEP may be positive or negative, and we
could have obtained the first table, printed in reverse order, by writing line 10 as

1-8 BASIC

i ik Al S S B S v e .

- Rl e L

ot e e . o &



10 FOR X = 100 TO 1 STEP -1

In the absence of a STEP clause, a step size of + 1 is assumed.

More complicated FOR statements are allowed. The initial value, the final value,
and the step size may all be formulas of any complexity. For example, if Nand Z
have been specified earlier in the program, we could write

FORX=N+17* Z TO (2-N) /3 STEP (N-4 * Z) / 10

For a positive step-size, the loop continues as long as the control variable is al-
gebraicly less than or equal to the final value. For a negative step-size, the loop
continues as long as the control variable is greater than or equal to the final value.

If the initial value is greater than the final value (less than for negative step-size),
then the body of the loop will not be performed at all, but the computer will im-
mediately pass to the statement following the NEXT. As an example, the following
program for addingup the first n integers will give the correct result 0 when n is 0.

10 READ N

20 LETS=0

30 FORK=1TON
40 LETS=S+K
50 NEXT K

60 PRINT S

70 GO TO 10

90 DATA 3, 10, 0
99 END

It is often useful to have loops within loops. These are called nested loops and can
be expressed with FOR and NEXT statements. However, they must actually be
nested and must not cross, as the following skeleton examples illustrate:

ALLOWED ALLOWED
—FOR X RO X
EFOR Y FOR Y
NEXT Y [ FOR Z
NEXT X NEXT 2
NOT ALLOWED l: FOR W
NEXT W
FOR X e NEXTY
4E FOR Y FOR Z
NEXT X E NEXT Z
——NEXT ¥ e MERT

BASIC 1-9




1.4 ARRAYS

In addition to the ordinary variables used by BASIC, there are variables which can
be used to designate the elements of an array. These are used where we might
ordinarily use a subscript or a double subscript, for example the coefficients of a
polynomial [ao, a, az,...] or the elements of a matrix [bi, .I. The variables

which we use in BASIC consist of a single leiter, which we call the name of the
array, followed by the subscripts in brackets or parentheses. Thus, we might
write A [1], A (2], A [3], etc., for the coefficients of the polynomial and B (1,1l
B [1,2], etc., for the elements of the matrix.

We can enter the array A(1), A(2), A(3),...A(10) into a program very simply by the
lines:

10 FORI=1 TO 10

20 READ A (I)

30 NEXT I

40 DATA 2, 3,-5,5,2.2, 4, -9, 123, 4, -4

We need no special instruction to the computer if no subscript greater than 10 oc-
curs. However, if we want larger subscripts, we must use a DIM statement, to
indicate to the computer that it has to save extra space for the array. When
in doubt, indicate a larger dimension than you expect to use. The maximum value
for a dimension is 255. For example, if we want a list of 15 numbers entered, we
might write:

10 DIM A (25)

20 READ N

30 FORI=1TON

40 READ A (I)

50 NEXT I

60 DATA 15

70 DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 33, 3% 41, 43, 4}
Statements 20 and 60 could have been eliminated by writing 30 as FOR I = 1 TO 15,

but the form as typed would allow for the lengthening of the array by changing only
statement 60, so long as it did not exceed 25.

We would enter a 3 X 5 array into a program by writing:

10 FORI=1TO3

20 FORJ=1TO5

30 READ B (I, J)

40 NEXT J

50 NEXT I

60 DATA 3, 3, -5 -8, 2

1-10 BASIC

- i W hai | D deil b Al Sk S5 2

R S - - &



70 DATA 4, -7, 3, 4, -2
80 DATAS, -8, 5, 17, 8

Here again, we may enter an array with no dimension statement, and it will handle
all the entries from B(1,1)toB(10, 10). If you try to enter an array with a subscript
greater than 10, without a DIM statement, you will get an error message telling
you that you have a subscript error. This is easily rectified by entering the line:

5 DIM B (20, 30)

if, for instance, we need a 20-by-30 table.

The single letter denoting an array name may also be used to denote a simple vari-
able without confusion. However, the same letter may not be used to denote both a
singly subscripted and a doubly subscripted array in the same program. The form
of the subscript is quite flexible, and you might have the array element B(I,K) or
Q(A(3,T), B -~ C).

Shown below is a list and run of a problem which uses both a singly and a doubly
subscripted array. The program computes the total sales of each of five salesmen,
all of whom sell the same three products. The array P gives the price/item of the
three products and the array S tells how many items of each product each man sold.
You can see from the program that product no. 1 sells for $1. 25 per item, no. 2 for
$4. 30 per item, and no. 3 for $2. 50 per item; and also that salesman no. 1 sold 40
items of the first product, 10 of the second, and 35 of the third, and so on. The
program reads in the price array in lines 40-80, using data in lines 910-930. The
same program could be used again, modifying only line 900 if the prices change, and
only lines 910-930 to enter the sales in another month.

This sample program did not need a dimension statement, since the computer auto-
matically saves enough space to allow all subscripts to run from 1 to 10. A DIM
statement is normally used to save more space. But in a long program, requiring
many small arrays, DIM maybe used to saveless spacefor arrays, in order toleave
more for the program.

Since a DIM statement is not executed, it may be entered into the program on any
line before END: it is convenient, however, to place DIM statements near the be-
ginning of the program.

READY
10 FOR I = 1 TO 3
20 READ P(I)

30 NEXT I
40 FOR I = 1 TO 3

50 FOR &) = 112305
60 READ S(I,J)
70 NEXT J

80 NEXT I

90 FOR J =1 TO S

100 LET S = 0

110 FOR .1 =1 T0.3

120 LET S = S + P(I)*S(1,J)

130 NEXT I

140 PRINT "TOTAL SALES FOR SALESMAN "J, "8$" S

BASIC 1-11




150 NEXT J

90@ DATA 1.255, 4.30, 2.50
918 DATA 40, 20, 37, 29, 42
920 DATA 10, 165 3, 21, B
930 DATA 35, 47, 29, 16, 33

999 END

RUN

TOTAL SALES FOR SALESMAN 1 $ 180.5
TOTAL SALES FOR SALESMAN 2 $ 211.3
TOTAL SALES FOR SALESMAN 3 $ 13165
TOTAL SALES FOR SALESMAN 4 $ 16655
TOTAL SALES FOR SALESMAN 5 $ 169.4

1.5 USE OF THE SYSTEM

Now that we know something about writing a program in BASIC, how do we set about
using a teletypewriter to type in our program and then to have the computer solve
our problem?

First, load the BASIC system tape and initiate its execution. The computer then
types READY and you should begin to type your program. Make sure that each line
begins with a line number which contains no more than four digits and contains no
non-digit characters. Be sure to press the CARRIAGE RETURN key at the com-
pletion of each line. Spaces may be inserted at any point in the line, including be-
fore the line numbers.

If, in the process of typing a statement, you make a typing error and notice it im-
mediately, you can correct it by pressing the backward arrow (shift key above the
letter "oh'). This will delete the character in the preceding space, and you can
then type in the correct character. Pressing this key a number of times will erase
from this line the characters in that number of preceding spaces. To delete all of
the present line, press ALT MODE. { Programs or data may be annotated by typing
the remark and then deleting the line (as far as the system is concerned) with an
ALT MODE. BASIC types a slash to show that a line has been deleted.

After typing your complete program, you type RUN, press the CARRIAGE RETURN
key, and hope. If the program is one which the computer can run, it will then run
it and type out any results for whichyou have asked in your PRINT statements. This
does not mean that your program.is correct, but that it has no errors of the type
known as ''grammatical errors'. If it had errors of this type, the computer would
have typed an error code as soon as the error was detected during the typing of the
program. Errorsdetected after RUN are structural (loop nesting, matching GOSUB
and Return) or arithmetical errors. A listof the error codes is inSect. 2.7 together
with the interpretation of each.

If you are given an error message, you can correct the error by typing a new line
with the correct statement. If you want to eliminate the statement on line 110 from
your program, you can do this by typing 110 and then the CARRIAGE RETURN. If
you want to insert a statement between those on lines 60 and 70, you can do this by
giving it a line number between 60 and 70.

T Use ESC key if no ALT MODE key.

1-12 BASIC

e A .



If it is obvious to you that you are getting the wrong answers to your problem, even
while the computer is running, you can type STOP and the computation will cease.
If the teletypewriter is actually typing, there is an express stop - just press any
key. It will type STOP and thenREADY and you can start to make your corrections.
If you are in serious trouble, use the express stop, and type SCRATCH. When the
system is ready to accept a new program, READY will be typed.

A sample use of the system is shown below.

READY
19 FOR N = 1 TO 7
20 PRINT N>, SQR(N)

30 NEXT N
49 PRINT '"“DONE"
50 END
RUN
1 1
2 1.41421
3 173205
B 2
5 2.23607
6 2+44949
7 2.64575
DONE

1.6 ERRORS AND DEBUGGING

It may occasionally happen that the first run of a new problem will be free of errors
and give the correct answers. But it is much more common that errors will be
present and will have to be corrected. Errors are of two types: errors of form (or
grammatical errors) which prevent the running of the program; and logical errors
in the program which cause the computer to produce wrong answers Or no answers
at all.

Errors of form will cause error codes to be printed, and the various error codes
are listed and explained in Sec. 2.7. Logical errors are often much harder
to uncover, particularly when the program gives answers which seem to be nearly
correct. In either case, after the errors are discovered, they can be corrected by
changing lines, by inserting new lines, or by deleting lines from the program. As
indicated in the last section, a line is changed by typing it correctly with the same
line number: a line is inserted by typing it with a line number between those of two
existing lines; and a line is deleted by typing its line number and pressing the
CARRIAGE RETURN key. Notice that you can insert a line only if the original line
numbers are not consecutive integers. For this reason, most programmers will
start out using line numbers that are multiples of five or ten, but that is a matter
of choice.

These corrections can be made at any time - whenever you notice them - either
before or after a run. Since the computer sorts lines out and arranges them in
order, a line may be retyped out of sequence. Simply retype the offending line with
its original line number.

As with most problems in computing, we can best illustrate the process of finding

the errors (or "bugs') in a program, and correcting (or "debugging'') it, by an ex-
ample. Let us consider the problem of finding that value of X between 0 and 3 for

BASIC 1-13




which the sine of X is a maximum, and ask the machine to print out this value of X
and the value of its sine. If you have studied trigonometry, you know that /2 is
the correct value: but we shall use the computer to test successive values of X
from O to 3, first using intervals of .1, then of .01, and finally of .001. Thus, we
shall ask the computer to find the sine of 0, of .1, of .2, of .3..., of 2.8, of 2.9,
and of 3, and to determine which of these 31 values is the largest. It will do it by
testing SIN(0) and SIN(. 1) to see which is larger, and calling the larger of these two
numbers M. Then it will pick the larger of M and SIN(.2) and call it M. This
number will be checked against SIN(.3), and so on down the line. Each time a
larger value of M is found, the value of X is "remembered'" in X0. When it finishes,
M will have been assigned to the largest value. It will then repeat the search, this
time checking the 301 numbers 0, .01, .02, .03,..., 2.98, 2.99, and 3, finding
the sine of each and checking to see which has the largest sine. At the end of each
of these three searches, we want the computer to print three numbers: the value
X0 which has the largest sine, the sine of that number, and the interval of search.

Before going to the teletypewriter, we write a program and let us assume that it is
the following:

10 READ D
20 LET X0 =0
30 FOR X =0 TO 3 STEP D
40 IF SIN (X) < = M THEN 100
50 LET X0 = X
60 LET M = SIN (X0)
70 PRINT X0, X, D
80 NEXT X0
90 GO TO 20
100 DATA .1,.01..001
110 END

We shall list the entire sequence on the teletypewriter and make explanatory com-
ments.

READY
1 REM PROGRAM NAME: MAXSIN
16 READ D

20 LWR X0= 0
ERROR 4 IN LINE 20

280 LET X@= @

30 FOR X = @ TO 3 STEP D

49 IF SINE«(X) <= M THEN 100
S@ LET XB8=X

60 LET M = SIN(X)

78 PRINT X0, X» D

ERROR 21 IN LINE 70

70 PRINT X8, X, D

80 NEXT Z+-X0

99 GO TO 20

198 DATA .1, 01, .001

1-14 BASIC

o A S S B

e



110 END
RUN

ERROR 41 IN LINE 80

A message indicates that LET was mistyped in line 20, so we retype it, this time
correctly.

Notice the use of the backwards arrow toerase a character in line 40, which should
have started IF SIN (X) etc., and in line 80.

After receiving the second error message, we find that we used XO for a variable
instead of X0 in line 70. The next error message indicates a FOR statement with-
out a NEXT. Upon checking we see that the variable in the FOR and NEXT are
different, so we correct statement 80. In looking over the program, we also notice
that the IF-THEN statement in 40 directed the computer to a DATA statement and
not to line 80 where it should go.

80 NEXT X
48 IF SIN(X) <= M THEN 80
RUN

ERROR 5@ IN LINE 40

The message indicates that M has never been assigned an initial value. We decide
to give it a value less than the maximum value of the sine, say -1.

20 LET M= -1

RUN
0 (%) 3 |
ol P | ol
02 02 'l
«3 «3 o1
4 STOP

READY

This is incorrect. We are having every value of X0, X, and the interval size print-
ed, so we direct the machine to cease operations by typing S even while it is run-
ning. Note that the 'S' does not print, but the word STOP is printed.

We fix this by moving the PRINT statement outside the loop. Typing 70 deleted that

line, and line 85 is outside of the loop. We also realize that we want M printed and
not X.

70

85 PRINT X0, M, D

RUN
1.6 «999574 o1
1.6 +999574 o1
l1¢6 «999574 o1
1.6 STOP

READY

BASIC 1-15




Of course, line 90 sent us back to line 20 to repeat the operation and not back toline
10 to pick up a new value for D. We also decide to put in headings for our columns
by a PRINT statement.

98 GO TO 10
S PRINT "X VALUE'", "SIN", RESOLUTION"
ERROR 21 IN LINE S

There is an errorin our PRINT statement: no left quotation mark for the third item

Retype line 5, with all of the required quotation marks.

S PRINT "X VALUE", '"SIN'", RESOLUT\
S PRINT "X VALUE'", "SIN'", '"RESOLUTION"

RUN

X VALUE SIN RESOLUTION
1.6 «999574 o1
1.57 1. 1.00000E-022
1.57098 1 1.00000E-03

ERROR S6 IN LINE 10

Exactly the desired results. Of the 31 numbers (0,.1,.2,.3,...,2.8,2.9,3) it is
1.6 which has the largest sine, namely .999574. Similarly for finer subdivisions.

Having changed so many parts of the program, we ask for a list of the corrected
program. Listing the corrected program, from time to time, is an important part
of debugging.

LIST

1 REM PROGRAM NAME: MAXSIN
S PRINT "X VALUE"™,"SIN",'"RESOLUTION"
18 READ D

20 LET M=-1

30 FOR X= ® TO 3 STEP D

48 IF SINCX) <= M THEN 80
S8 LET X@=X

680 LET M=SIN(X)

80 NEXT X

85 PRINT X0sM»D

90 GOTO 10

100 DATA .1 » 1.00000E-02, 1.00000E-03
110 END
PLIST

The program is saved for later use by punching it on the Tape Punch.

In solving this problem, there is a common device which we did not use, namely
the insertion of a PRINT statement when we wonder if the machine is computing
what we think we asked it to compute. For example, if we wondered about M, we
could have inserted 65 PRINT M, and we would have seen the values.

1-16 BASIC



1.7 SUMMARY OF ELEMENTARY BASIC STATEMENTS

In this section we shall give a short and concise description of each of the types of
BASIC statements discussed earlier in this chapter and add one statement toour
list. In each form, we shall assume a line number, and shall use brackets to denote
a general type. Thus, [variable] refers to any variable, which is a single letter,
possibly followed by a single digit.

1.7.1 LET

This statement is not a statement of algebraic equality, but rather a command to
the computer to perform certain computations and to assign the answer to a certain
variable. Each LET statement is of the form: LET [variable] = [ formula]. More
generally several variables may be assigned the same value by a single LET state-
ment.

Examples: (of the first type):

100 LETX=X+1
259 LET W7 = (W-X4 ¢ 3)%(Z - A/(A -B)) -17
( of the second type):
5 LETX=Y3=A(3,1)=1
90 LETW=Z=3*X-4*X*%2

1.7.2 READ and DATA

We use a READ statement to assign to the listed variables values obtained from a
DATA statement. Neither statement is used without one of the other type. A READ
statement causes the variables listed in it to be given, in order, the next available
numbers in the collection of DATA statements. Before the program is run, the
computer takes all of the DATA statements in the order in which they appear and
creates a large data block. Each time a READ statement is encountered anywhere
in the program, the data block supplies the next available number or numbers. If
the data block runs out of data, with a READ statement still asking for more, the
program is assumed to be done and we get an out-of-data error code.

Since we have to read indata before we can work with it, READ statements normal-
ly occur near the beginning of aprogram. The location of DATA statementsisarbi-
trary, as long as they occur in the correct order. A common practice is to collect
all DATA statements and place them just before the END statement.

Each READ statement is of the form:

READ | sequence of variables]| and each DATA statement of the form:
DATA [ sequence of numbers]

Examples: 150 READ X, Y, Z, X1, Y2, Q9
330 DATA 4, 2, 1.7
340 DATA 6.734E-3, -174.321, 3.14159265

234 READ B (K)
283 'DATA 258,56, T, Ly 10, 8 6,4

BASIC 1-17




10 READ R (I, J)
440 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5
450 DATA 2.765, 5.5576, 2.3789E2

Remember that only numbers are put in a DATA statement, and that 15/7 and 5§
are formulas, not numbers.

1.7.3 PRINT

The PRINT statementhas a number of differentuses and is discussed in more detail
in Chapter 2. The common uses are (a) to print out the result of some computations,
(b) to print out verbatim a message included in the program, (c)a combination of
the two, and (d) to skip a line. We have seen examples of only the first two in our

sample programs. Each type is slightly different in form, but all start with PRINT
after the line number.

Examples of type (a): 100 PRINT X, SQR (X)

135 PRINT X, Y, Z, B*B -4*A*C, EXP(A-B)

The first will print X and then, a few spaces to the right of that number, its square
root. The second will print five diffierent numbers:

X, Y, Z, B2 -4AC, and eA-B,

The computer will compute the two formulas and print them for you, as long as you
have alreadygivenvaluesto A, B, and C. It can print up to five numbers per line
in this format.
Examples of type (b): 100 PRINT "NO UNIQUE SOLUTION"
430 PRINT "X VALUE","SINE", "RESOLUTION"

Both have been encountered in the sample programs. The first prints that simple
statement; the second prints the three labels with spaces between them. The labels
in 430 automatically line up with three numbers called for in a PRINT statement (as
long as the labels do not exceed 14 characters) as seen in MAXSIN.

Examples of type (¢): 150 PRINT "THE VALUE OF X IS" X

30 PRINT "THE SQUARE ROOT OF "X, "IS"
SQR(X)

If the first has computed the value of X to be 3, it will print out: THE VALUE OF
X is 3. If the second has computed the value of X to be 625, it will print out: THE
SQUARE ROOT OF 625 IS 25.

Examples of type (d): 250 PRINT

The computer will advance the paper one line when it encounters this command.

1-18 BASIC

e A Scon S e

T ¢



1.7.4 GO TO

There are times in a program when you do not want all commands executed in the
program. An example of this occurs in the MAXSIN problem where the computer
has computed X0, M, and D and printed them out in line 85. We did not want the
program to go to the END statement yet, but to go through the same process for a
different value of D. So we directed the computer to go back to line 10 with a GO
TO statement. Each is in the form of GO TO [ line number]. (It is possible to go
to a non-executable statement; control passes to the next sequential executable
statement. )

Example: 150 GO TO 75

1.7.5 |IF - THEN

There are times when we are interested in jumping the normal sequence of com-
mands, if a certain relationship holds. For this we use an IF-THEN statement,
sometimes called a conditional GO TO statement. Such a statement occurred at
line 40 of MAXSIN. The more common form of the statement is:

IF [ formula] [ relation] [formula| THEN [line number ]

Examples: 40 IF SIN (X) < = M THEN 80
20 IF G = 0 THEN 65
The first asks if the sine of X is less than or equal to M, and directs the computer
to skip to line 80 if it is. The second asks if G is equal to 0, and directs the com-

puter to skip to line 65 if it is. In each case, if the answer to the question is No,
the computer will go to the next line of the program.

In the general sense, the IF-THEN statement may have the form:
IF [formula] THEN [ line number]

Examples: 17 IF G = 0 THEN 77
35 IF A THEN 83
85 IF A+ B - 5 THEN 302
90 IF -2 THEN 200

The formula is evaluated and the result interpreted as non-zero (true) or zero
(false). Thus, in the first case, if G had a value of 2, the formula G = 0 is evalu-
ated as zero or false. If A would have a value of 2 (in the second case), the formula
is evaluated as non-zero or true. In the third case, if A equalled 2 and B equalled
3, the formula would yield a value of zero (false). The fourth example would always
be true.

FOR [ variable] = [ formula] TO [ formula] STEP [ formula]

1.7.6 FOR and NEXT

We have already encountered the FOR and NEXT statements in ourloops, and have
seen that they go together, one at the entrance to the loop and one at the exit, di-
recting the computer back to the entrance again. Every FOR statement is of the
form

BASIC 1-19




Any simple (not subscripted) variable may be used as the FOR variable. Most com-
monly, the expressions will be integers and the STEP omitted. In the latter case,
a step size of one is assumed. The accompanying NEXT statement is simple in
form, but the variable must be precisely the same one as that following FOR in the
FOR statement. Its form is NEXT [ variable].

Examples: 30 FORX=0TO3 STEP D
80 NEXT X
120 FOR X4 = (17 + COS(Z))/3 TO 3*SQR(10) STEP 1/4
235 NEXT X4

240 FOR X =8 TO 3 STEP -1

456 FOR J = -3 TO 12 STEP 2
Notice that the step size may be a formula (1/4), a negative number (-1), or a posi-
tive number (2). In the example with lines 120 and 235, the successive values of
X4 will be .25 apart, in increasing order. In the next example, the successive

valuesof Xwill be 8, 7, 6, 5, 4, 3. In thelastexample, on successive trips through
the loop, J will take on values -3, -1, 3, 5, 7, 9, and 11.

If the initial, final, or step-size values are given as formulas, these formulas are
evaluated once and for all upon entering the FOR statement. The control variable

can be changed in the body of the loop; of course, the exit test always uses the latest
value of this variable.

If you write 50 FOR Z = 2 TO -2, without a negative step size, the body of the loop

will not be performed and the computer will proceed to the statement immediately
following the corresponding NEXT statement.

1.7.7 DIM

Whenever we want to enter an array with a subscript greater than 10, we must use
a DIM statement to inform the computer to save us sufficient room.

Examples: 20 DIM H(35)
35 DIM Q(5, 25)

The first would enable us to enter an array of 35 items, and the latter a 5 X 25
array.

1.7.8 END
Every program must have an END statement, and it must be the statement with the
highest line number in the program. Its form is simple: a line number with END.

Example: 999 END

1-20 BASIC

e Ak Sk S A

. ——



ADVANCED BASIC 2
s e

2.1 MORE ABOUT PRINT

The uses of the PRINT statement were described in 1. 7.3, but we shall give more
detail here. Although the format of answers is automatically supplied for the be-
ginner, the PRINT statement permits a greater flexibility for the more advanced
programmer who wishes a different format for his output.

The teletypewriter line is divided into five zones starting at positions 0, 15, 30,
45, and 60. Control of the use of these comes from the use of the comma: a comma
is a signal to move to the next print zone or, if the fifth print zone has just been
filled, to move to the first print zone of the next line.

More compact output can be obtained by use of the semi-colon; it inhibits spacing
between printzones on a line, acting only to separate quantities to be printed (e. g. ,
A + B; C/D) or suppress a CARRIAGE RETURN at the end of a PRINT statement.

Spacing within a print zone depends on the value and type of the number being print-
ed. A number is always printed in a zone larger than it needs and is left-justified
in the zone. The size is determined as follows:

Value of Number Type of Number Format of Zone
-999< n< +999 Integer rxxx nT  only 6 long
+1000 < n < +32767 B SEBR

AxoxxxxXX onn Only 6 digits

.1<n< 999999, 5 Large Integer or and: decimal point..  (Deei-~
e mal point printed as one of
x's; trailing zeros suppres-
sed.)
n<.l1 Large Integer or
999999, 5<n Real 2 x. xxxxxE+eenn

For Example, if you were to type the program

18 FOR I =1 TO 15
20 PRINT 1

30 NEXT 1

40 END

RUN

TThe carot symbol, , represents a space typed on the teletypewriter.

BASIC 2-1




the teletypewriter would print 1 at the beginning of a line, 2 at the beginning of the
next line, and so on, finally printing 15 on the fifteenth line. But, by changing line
20 to read

20 PRINT 1.

RUN
you would have the numbers printed in the zones, reading
1 2 3 4
7 8 9 10
11 1 1 14 15

2 3

If you wanted the numbers printed in this fashion, but more tightly packed, you would
change line 20 to replace the comma by a semi-colon:

20 PRINT I3
RUN

and the result would be printed

2 3 B S 6 7 8 9 10 11 12
13 14 15

You should remember that a label inside quotation marks is printed just as it ap-
pears and also that the end of a PRINT signals a new line, unless a comma or semi-
colon is the last symbol.

Thus, the instruction
50 PRINT X, Y
will result in the printing of two numbers and the return to the next line, while
50 PRINT X, Y,

will result in the printing of these two values and no return — the next number to be

printed will occur in the third zone, after the values of X and Y in the first two.

Since the end of a PRINT statement signals a new line, you will remember that
250 PRINT

will cause the typewriter to advance the paper one line. It will put a blank line in
line in your program, if you want to use it for vertical spacing of your results, or
it causes the completion of partially filled line, as illustrated in the following frag-
ment of a program:

50 FORM = 1 to N
110 FORJ =1toM
120 PRINT B (M, J);
130 NEXT J
140 PRINT
150 NEXT M

2-2 BASIC



This program will print B(1, 1) and next to it B(1,2). Without line 140, the tele-
typewriter would then go on printing B(2, 1), B(2, 2), and B(2, 3) on the same line,
and then B(3,1), B(3,2) etc. Line 140 directs the teletypewriter, after printing the
B(1, 2) value corresponding to M = 2, to start a new line and to do the same thing
after printing the value of B(2,3) corresponding to M = 3, etc.

The instructions

S@ PRINT *'* HP BASIC '3

S1 PRINT "LANGUAGE COMPILER"
90 END

RUN

will result in the printing of

HP BASIC LANGUAGE COMPILER

Formatting of output can be controlled even further by use of the function TAB.

Insertion of TAB(17) will cause the teletypewriter to move to column 17, just as if a
tab had been set there. For this purpose the positions on a line are numbered from
0 through 71.

More precisely, TAB may contain any formula as its argument. The value of the
formula is computed, and its integer part is taken. (If the result is greater than 71,
the teletypewriter is moved to position zero of the next line.) The teletypewriter is
then moved forward to this position — unless it has already passed this position, in
which case the TAB is ignored.

For example, inserting the following line in a loop:
PRINT X; TAB(12); Y; TAB(27); 2

will cause the X-value to start in column 0, the Y-value in column 12 and the Z-
value in column 27.

A comma following a TAB clause has no effect on positioning the teletypewriter.
For example, the statement "PRINT TAB (7), A+B" causes the value of A+B to be
printed starting at position 7, while the statement "PRINT Z, A+B'" causes the value
to be printed starting at position 15.

The following rules for the printing of numbers will help you in interpreting your
printed results:

1. If a number is an integer with a value between -32768 and +32767, in-
clusive, the decimal point is not printed.

2- If the number is an integer out of the above range (see INT function),
or if the number is real and has an absolute value between .1 and
999999.5, the number is rounded to six digits and printed with a deci-
mal point. Zeros trailing the decimal point are suppressed.

BASIC 2-3




3. If a number is either greater than 999999.5 or less than .1 in magni-
tude, it is rounded to six places; the teletypewriter then prints a S}Sace
(if positive) or minus sign (if negative), the first digit, the decimal
point, the next five digits, the letter E (indicating exponent), the sign
of the exponent, and the exponent. For example, it will take 32, 437,
580, 259 and write it as 3.24376E + 10.

The following program, in which we print out powers of 2, shows how numbers are
printed.

READY
19 FOR N = -5 TO 30
20 PRINT 21tN3
30 NEXT N
40 END
RUN
3.12500E-02 6+25000E-02 « 125 25 S 1
2 El 8 16 32 64 128 256 512 1024 2048
4096 8192 16384 32768. 65536 131072 262144.
52 4288. 1.04858E+06 2.09715E+06 4.19430E+06 8.38861E+06
1.67772E+07 3.35544E+07 6. 71089E+07 1.34218E+08 2.68435E+08
5.36871E+08 1.07374E+09 |

2.2 FUNCTIONS AND DEF

Three functions were listed in Section 1. 2 but not described: INT, RND and SGN.

2.2.1 INT

The INT function is the function which frequently appears in algebraic computation
as [x], and it gives the greatest integer not greater than x for -32768 < x < 32768.
Thus INT (2.35) = 2, INT (-2.35) = -3, and INT (12) = 12. INT (x) = 32767 for
X > 32768 and INT (x) = -32768 for x < -32768.

One use of the INT function is to round numbers. We may use it to round to the
nearest integer by asking for INT(X + .5). This will round 2.9, for example, to 3,
by finding INT(2.9 +.5) = INT (3.4) = 3. You should convince yourself that this will
indeed dothe rounding guaranteed for it (it will round a number midwaybetween two
integers up to the larger of the integers).

It can also be used toround to any specific number of decimal places. For example,
INT (10X +.5)/10 rounds X correct toone decimal place, and INT (104D*X +.5)/104D
rounds X correct to D decimal places.

2.2.2 RND

The function RND produces a random number between 0 and 1. The form of RND
requires an argument although the argument has no significance, and so we write
RND(X) or RND(#). (The argument may be a constant or a previously defined vari-
able. )

2-4 BASIC

A Al Mok S . S

S e b i



If we want the first twenty random numbers, we write the program below and we
get twenty six-digit decimals. This is illustrated in the following program.

READY
16 FOR L = 1 TO 20
20 PRINT RND(B®)»

30 NEXT L

40 END

RUN
1.52662E-05 « 5000892 «500412 1:64799E-03 6.17992E-083
« 522248 «577867 «266971 «901025 «503415
«411261 « 436832 «419642 8.63642E-02 «241408
«171168 « 35434 8.55276E-082 «824103 « 674869

READY

RUN
1.52602E-085 *« 500092 «500412 1.64799E-03 6«17992E-03
522248

Note that the second RUN was giving exactly the same "random' numbers as the
first RUN. This greatly facilitates the debugging of programs that use the random
number generator.

On the other hand, if we want twenty random one-digit integers, we could change
line 20 to read

20 PRINT INTC1@*RND(@)),

and we would then obtain

- b WUa
WH o0
s MNOwv
(o IS IRVe IS
[ SR S

We can vary the type of random numbers we want. For example, if we want 20
random numbers ranging from 1 to 9 inclusive, we could change line 20 as shown

20 PRINT INTC9%*RND(@) + 1)3
RUN

1 S 5 1 1 S 6 3 9 S - -
B 1 3 2 “ 1 8 7

or we can obtain random numbers which are integers from 5 to 24 inclusive by
changing line 20 as in the following example.

20 PRINT INT(20*RND(®) + S)3

RUN
5 15 15 5 S 15 16 10 23 15 13 13
13 6 9 8 12 6 21 18

In general, if we want our random numbers to be chosen from the A integers of
which B is the smallest, we would call for INT(A*RND (0) + B).

BASIC 2.5




2.2.3 SGN

The SGN function is one which assigns the value 1 to any positive number, 0 to zero,
and -1 to any negative number. Thus SGN(7.23) = 1, SGN(0) = 0, and SGN(-. 2387)
= =1

2.2.4 DEF

In addition to the standard functions, you can define any other function which you
expect to use a number of times in your program by use of a DEF statement. The
name of the defined function must be three letters, the first two of which are FN.
Hence, you may define up to 26 functions, e.g., FNA, FNB, etc.

The handiness of such a function can be seen in a program where you frequently
need the function e~X“ + 5, You would introduce the function by the line

30 DEF FNE(X) = EXP(-X % 2 + 5)

and later on call for various values of the function by FNE(.1), FNE(3.45), FNE
(A+2), etc. Such definition can be a great time-saver when you want values of some
function for a number of different values of the variable.

The DEF statement may occur anywhere in the program, and the expression to the
right of the equal sign may be any formula which can be fitted onto one line. It may
include any combination of other functions, including ones defined by different DEF
statements, and it can involve other variables besides the ones denoting the argu-
ment of the function. Assuming FNR is defined by

70 DEF FNR(X) = SQR(2 + LOG(X) - EXP(Y*Z)*(X + SIN(2*2)))

and you have previously assigned values to Y and Z, you can ask for FNR(2. 7). You
can give new values to Y and Z before the next use of FNR.

The use of DEF is limited to those functions whose value may be computed within a
single BASIC statement. However, there are often much more complicated func-
tions or portions of a program which must be calculated at several points within the
program. For these operations, the GOSUB statement may be used.

2.3 GOSUB AND RETURN

When a particular part of a program is to be performed more than one time, or
possibly at several different places in the overall program, it is most efficiently
programmed as a subroutine. The subroutine is entered with a GOSUB statement,
where the number is the line number of the first statement in the subroutine. For
example,

90 GOSUB 210
directs the computer to jump to line 210, the first line of the subroutine. The logi-
cal end of the subroutine should be a return command directing the computer to re-
turn to the earlier part of the program. For example,
350 RETURN
will tell the computer to go back to the first line numbered greater than 90, and to

continue the program there.

2-6 BASIC

S Ak ik S0 8



The following example, a program for determining the greatest common divisor of
three integers using the Euclidean Algorithm, illustrates the use of a subroutine.
The first two numbers are selected in lines 30 and 40 and their GCD is determined
in the subroutine, lines 200-310. The GCD just found is called X in line 60, the
third number is called Y in line 70, and the subroutine is entered from line 80 to
find the GCD of these two numbers. This number is, of course, the greatest com-
mon divisor of the three given numbers and is printed out with them in line 90.

You may use a GOSUB inside a subroutine to perform yet another subroutine. This
would be called '""nested GOSUBS'. GOSUBS may be nested nine deep. In any case,
it is absolutely necessary that a subroutine be left only with a RETURN statement,
using a GOTO or an IF-THEN to get out if a subroutine will not work properly. You
may have several RETURNS in the subroutine solong as exactly one of them will be
used.

READY
19 'PRINT ™ A% 7B"» " 8" "'GECD™
20 READ A, B, C

30 LET X = A
40 LET Y = B
S8 GOSuB 2089
60 LET X = G
70 LET Y = G
80 GOSUB 200

9@ PRINT A Bs C» G

160 GO TO 20

110 DATA 60, 90, 120

120 DATA 38456, 64872, 98765
130 DATA 32, 384, 72

200 LET Q@ = INT((X/Y)

210 LET R X = Q*Y
220 IF R = @ THEN 300
230 LET X =%

240 LET Y = R

250 GO TO 200
300 LET G = Y

318 RETURN

320 END
RUN

A B c GCD
60 90 120 30
38456 64872, 98765 1
32 384 72 8

ERROR 56 IN LINE 20

2.4 INPUT

There are times when it is desirable to have data entered during the running of a
program. This is particularly true when one person writes the program and enters
it into the machine's memory, and other persons are to supply the data. This may
be done by an INPUT statement, which acts as a READ statement but does not draw
numbers from a DATA statement. If, for example, you want the user to supply
values for X and Y into a program, you will type

40 INPUT X, Y

BASIC 2-7




before the first statement which is to use either of these numbers. When it en-
counters this statement, the computer will type a question mark and wait. The

user types two numbers, separated by a comma, presses the CARRIAGE RETURN
key and the computer goes on with the rest of the program.

Frequently an INPUT statement is combined with a PRINT statement to make sure
that the user knows what the question mark is asking for. You might type

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE";
30 INPUT X, Y, Z

and the machine will type out
YOUR VALUES OF X, Y, AND Z ARE?

Without the semicolon at the end of line 20, the question mark would have been
printed on the next line.

Data entered via an INPUT statement is not saved with the program. Furthermore,
it may take a long time to enter a large amount of data using INPUT. Therefore,
INPUT should be used only when small amounts of data are to be entered, or when
it is necessary to enter data during the running of the program such as with game-
playing programs.

2.5 SOME MISCELLANEOUS STATEMENTS

Several other BASIC statements that may be useful from time to time are STOP,
REM and RESTORE. The COM statement, a special feature of HP BASIC, permits
transfer of data between programs.

2.5.1 STOP

STOP is entirely equivalent to GO TO xxxx, where xxxx is the line number of the
END statement in the program. It is useful in programs having more than one
natural finishing point. For example, the following two program portions are exactly
equivalent.

250 GO TO 999 250 STOP
340 GO TO 999 340 STOP
999 END 999 END

2.5.2 REM

REM provides a means for inserting explanatory remarks in a program. The
computer completely ignores the remainder of that line, allowing the programmer
to follow the REM with directions for using the program, with identifications of the
parts of a long program, or with anything else that he wants. Although what fol-
lows REM is ignored, its line number may be used in a GO TO or IF-THEN state-
ment.

2-8 BASIC

i Mk S s 8



100 REM INSERT DATA IN LINES 900-998. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY

200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS

.....

520 GOSUB 200

2.5.3 RESTORE

Sometimes it is necessary to use the data in a program more than once. The
RESTORE statement permits reading the data as many additional times as it is
used. Whenever RESTORE is encountered in a program, the computer restores
the data block pointer to the first number. A subsequent READ statement will then
start reading the data all over again. A word of warning — if the desired data are
preceded by code numbers or parameters, superfluous READ statements should be
used to pass over these numbers. As an example, the following program portion
reads the data, restores the data block to its original state, and reads the data
again. Note the use of line 570 to 'pass over'" the value of N, which is already
known.

100 READ N
110 FORI=1TON
120 READ X

ooooo

560 RESTORE

570 READ X

580 FORI=1TON
590 READ X

2.54 COM

The COM statement allows one program to store information in memory for re-
trieval by a subsequent program (only one BASIC program can exist in the system
at a given time). The form of the statement is the same as for the DIM statement
with the word COM replacing DIM, thus the common area information is accessible
only as an array. Care must be taken not to dimension the same array in both a
COM and DIM statement. The COM statement must be the first entered and lowest
numbered statement of the program.

BASIC 2-9




The common area is a block of contiguous storage elements: two computer words

per element. The elements are allotted in the order that the arrays appear in the
COM statement; the elements within an array are stored row by row. It is the
programmer's responsibility to see that the portions of the common area are acces-
sed properly. Assuming that one program starts with the statement "1 COM A(10),
B(3,3)" and another with '""1 COM C(5), D(5), F(3,3)", the common area storage
elements would be assigned as follows:

Element First Program Second Program
Position Reference Reference

1 A1) C(1)

2 A(2) C(2)

3 A(3) C(3)

4 A(4) C(4)

5 A(5) C(5]}

6 A(6) D(1)

7 A(T) D(2)

8 A(8) D(3)

9 A(9) D(4)
10 A(10) D(5)
11 B(1,1) F(1,1)
12 B(1, 2) F(1, 2)
13 B(1, 3) F(1, 3)
14 B(2,1) F(2,1)
15 B(2, 2) F(2, 2)
16 B(2, 3) F(2, 3)
17 B(3,1) F(3,1)
18 B(3, 2) F(3, 2)
19 B(3, 3) F(3, 3)

A reference in the first program toB(1, 1) would access the same element as a ref-
erence to F(1, 1) in the second program. If A contained only 9 elements, however,
the B(1, 1) and F(1, 1) references would access different elements.

The length of the common area may vary between programs, but for any two pro-
grams, information may be transferred only via the portion which is common to
both.

If the first program declares ''1 COM A(10), B(5,5)" and the succeeding program
contains ''1 COM D(10), E(5,5), F(10)'"; the values of F would be unpredictable. If
the second program contained '"1 COM D{10)" only, the contents of B would be de-
stroyed.

2.6 MATRICES

A common and convenient interpretation of doubly subscripted arrays is as matrices.
Althoughyou can work out for yourself programs which involve matrix computations,
there is a special set of twelve instructions for such computations. They are identi-
fied by the fact that each instruction must start with the word '"MAT'. They are

2-10 BASIC

&



MAT READ A, B,C Read the three matrices, their dimensions hav-
ing been previously specified. Data is stored in
the matrix row by row.

MAT C = ZER Fill out C with zeros.
MAT C = CON Fill out C with ones.
MAT C = IDN Set up C as an identity matrix.

MAT PRINT A, B;C Print the three matrices, with A and C in the
regular format, but B closely packed.

MAT B=A Set the matrix B equal to the matrix A.
MATC=A+B Add the two matrices A and B.

MATC=A-B Subtract the matrix B from the matrix A.

MAT C = A*B Multiply the matrix A by the matrix B.

MAT C = TRN(A) Transpose the matrix A.

MAT C = (K)*A Multiply the matrix A by K. K, which must be

in parentheses, may be a formula.
MAT C = INV(A) Invert the matrix A.

These twelve statements, with the addition of DIM, make matrix computations
easier, and in combination with the ordinary BASIC instructions make the language
much more powerful. However, the user has to be careful to keep (and to under-
stand) the conventions "built into" the language. We will discuss, below, the indi-
vidual MAT statements.

The following convention has been adopted for MAT: If in a MAT instruction we
have a matrix of dimension M-by-N, the rows are numbered 1, 2, ..., M, and the
columns 1, 2,..., N.

The DIM statement may simply indicate what the maximum dimension is to be.
Thus, if we write

DIM M(20, 35)

then M may have up to 20 rows and up to 35 columns. This statement is to save
enough space for the matrix, and hence, the only care at this point is that the di-
mensions declared are large enough to accommodate the matrix. (The assumed
dimensions of 10 rows by 10 columns do not apply for a matrix involved in matrix
computations. )

The actual dimensions of a matrix are established either when it is set up (by a DIM
statement) or when they are defined in one of four MAT statements: MAT READ,
MAT — ZER, MAT — CON, or MAT — IDN.

Thus,

BASIC 2-11




10 DIM M(20, 7)

50 MAT READ M

will read a 20-by-7 matrix for M, while
50 MAT READ M(117, 30)

will read 17-by-30 matrix for M, provided sufficient space has been saved for it by
writing, for example,

10 DIM M(20, 35).
The elements of a matrix are stored by row in ascending locations in memory; two

computer words are used for each element. A matrix declared as DIM A(3, 3) will
be structured as:

Columns
A(1,1) A(1, 2) A(1, 3)
Rows | A(2,1) A(2, 2) A(2, 3)
A(3,1) A(3, 2) A(3, 3)

The elements would be stored in the following order:

Element Position Memory Location Element
1 m A(1,1)
2 m+2 A(1, 2)
3 m+4 A(1, 3)
4 m+6 A(2,1)
5 m+8 A(2,2)
6 m+10 A(2, 3)
7 m+12 A(3,1)
8 m+14 A(3, 2)
9 m+16 A(3, 3)

Given a statement DIM A(M, N), the location of element A(i, j) with respect to the
first element, A(1, 1), of the matrix is given by the equation:

location A(1, 1) +2(M(i-1) +(j-1))
The three instructions:

MAT M = ZER
MAT M = CON
MAT M = IDN
which set up a matrix M with all components zero, all components equal to one, and

as an identity matrix, respectively, act like MAT READ as far as the dimension of
the resulting matrix is concerned. For example,

2-12 BASIC

SRPEP.



MAT M = CON(17, 3)
sets up a T-by-3 matrix with 1 in every component, while

MAT M = CON

sets up a matrix, with ones in every component, according to previously specified
dimensions. Thus,

10 DIM M(20, 7)
20 MAT READ M(7, 3)

.......
.......

90 MAT M = ZER(16, 10)

will first read in a 7-by-3 matrix for M. Then it will set up a 7-by-3 matrix of all
ones for M (the actual dimension having been set up as 7-by-3 in line 20.) Next it
will set up M as a 15-by-"7 all zero matrix. (Note that although this is larger than
the previous M, it is within the limits set in 10.) But it will result in an error code
in line 90. The limit set in line 10 is 140 components, and in 90 we are calling for
160 components. The original dimensions may be exceeded, providing the total
number of components is within the proper limit;

90 MAT M = ZER(25, 5)
would not yield an error message.

The MAT PRINT statement causes the array elements to be printed row by row
across the page. The spacingbetween row elements is controlled by the use of , and
; in the same manner as for the PRINT statement. Rows containing more elements
than can be printed on aline are continued on consecutivelines. Eachrow is started
on a new line and is spearated from the previous row by a blank line. Thus the
instruction

MAT PRINT A, B; C

will cause the three matrices to be printed A and C with five components to a line
and B with up to twelve.

Singly subscripted arrays may be interpreted as column nestors. Vectors may be
used in place of matrices, as long as the above rules are observed. Since a vector
like V(I) is treated as a column vector by BASIC, a row vector has to be introduced
as a matrix that has only one row, namely row 1. Thus

DIM X(7), Y (1, 5)

introduces a 7T-component column vector and a 5-component row vector.

BASIC 2-13




A column vector will be printed one element to the line with double spacing between
lines. A row vector will be printed in the manner indicated by the form of the state-

ment. For example: if V is a row vector then, "MAT PRINT V" will print the
vector V a single element to the line; "MAT PRINT V, " will print V as a row vec-
tor, five numbers to the line, while

MAT PRINT V;
will print V as a row vector with up to twelve numbers to the line
MAT B =A

This sets B up to be the same as A provided the dimensions previously assigned to
B are the same as those of A.

MATC=A+B, MATC=A-B

For these to be legal A, B, and C must have the same dimensions. Instructions
MAT A = A+Bare legal — the indicated operationis performed and the answer stored
in A. Only a single arithmetic operationis allowed so MATD=A + B - C isillegal
but may be achieved with two MAT instructions.

MATC=A*B

For this to be legal it is necessary that the number of columns in A be equal to the
number of rows in B, the number of rows in C be equal to the number of rows in A,
and the number of columns in C be equal to the number of columns in B. For ex-
ample, if A has dimension L-by-M and B has dimension M-by-N then C= A *B
must have dimension L-by-N. It should be noted that while MAT A - A + B may be
legal, MAT A = A * B will result in nonsense. There is good reason for this. In
adding two matrices we may immediately store the answer in one of the matrices;
but if we attempt to do this in multiplying two matrices, we will destroy components
which would be needed to complete the computation. MAT B = A * A is, of course,
legal provided A is a 'square' matrix.

MAT C = TRN(A)

This lets C be the transpose of the matrix A. If A is an M-by-N matrix C must be
an N-by-M matrix.

MAT C = (K) * A

The matrix C is the matrix A multiplied by the value of K (i. e., each component of
A is multiplied by K to form the components of C). K, which must be in parenthe-
Ses, may be a number or a formula. MAT A = (K) * A is legal.

MAT C = INV(A)

The number C is the inverse of A. (A must, of course, be a 'square' matrix.) A
matrix must not be inverted or transposed into itself.

We close this section with twoillustrations of matrix programs. The first one reads
in A and B in line 30 and in so doing sets up the correct dimensions. Dimensions

2-14 BASIC

e e A A



or Care set up in line 35. Then, in line 40, A + A is computed and theansSwer 1S
.lled C. Note that the data in line 90 results in A being 2-by-3 and B lu 3-
by-3. Both MAT PRINT formatsare illustrated, and one method of labeling a matrix

print is shown.

READY

18 DIM AC15515), B(15515)s CC15,15)
20 READ M,N

30 MAT READ A(MsN)» BU(N,N)

35 MAT C = ZER(M5N)

49 MAT C = A + A

S@ MAT PRINT C3

60 MAT C = Ax*B

70 PRINT

75 PRINT *"A*B ="

80 MAT PRINT C»

9@ DATA 2, 3

91 DATA 1, 25, 3

92 DATA 4, S, 6

93 DATA 15, B, -1

94 DATA @8>, ~-1, -1

95 DATA -1> 0, O

99 END
RUN

2 4 6

8 10 12

A*B =

=2 -2 -3
-2 -5 -9

The second example inverts an N-by-N Hilbert Matrix

1 1/2 1/3 1/N
1/2 1/3 1/4 1/N+1
1/3 1/4 1/5 1/N+2
1/N 1/N+1  1/N42 1/2N-1

Ordinary BASIC instructions are used to set up the matrix in lines 50 to 90. Note
that this occurs after correct dimensions have been declared. Then a single in-
struction results in the computation of the inverse, and one more instruction prints
it. In this example we have supplied 4 for N in the DATA statement and have made
a run for this case.

BASIC 2-15




READY

S REM THIS PROGRAM INVERTS AN N-BY-N MATRIX
10 DIM A(20,20), B(20,20)

20 READ N

30 MAT A = CONCN,N)
48 MAT B = CONCN,N)
S8 FOR I =1 TO N
606 FOR J =1 TO N
70 LET ACI»Jd) = 1/CI+J-1)
80 NEXT J
9@ NEXT 1
180 MAT B = INVCA)
110 PRINT
115 PRINT "INVCA) ="
120 PRINT
125 MAT PRINT B3
198 DATA 4
199 END
RUN
INVCA) =
16.0019 -120.0821 240 .0 49 -140.031
-120.02 1200.22 -2700 .52 1680.33
240 .0 48 -2700.51 6481 .2 -4200.77
-140.03 1680.33 -4200.77 2800 . 49

The reader is warned that beyond N = 7 the Hilbert matrix cannot be inverted be-
cause of severe round-off errors.

2.7 ERROR CODES

An error message is printed as soon as the error condition is detected. The format
is as follows:

ERROR xx IN LINE nn

Error
Code Meaning
1 Statement ends unexpectedly.
2 Input exceeds 71 characters.
3 System command not recognized. (May be missing statement number.)
- Missing or incorrect statement type.
5 Exponent of number is missing power.
6 Symbol following MAT not recognized.
7 LET statement has no store.
8 Multiple or misplaced COM statement.

2-16 BASIC



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Missing or incorrect function identifier in DEF.
Missing parameter in DEF statement.

Missing assignment operator.

Missing THEN.

Missing or incorrect for-variable.

Missing TO.

Incorrect STEP in FOR statement.

Called routine does not exist.

Wrong number of parameters in CALL statement.
Missing or incorrect constant in DATA statement.
Missing or incorrect variable in READ statement.
No closing quote for PRINT string.

Missing print delimiter or bad PRINT quantity.
Illegal word follows MAT.

Missing delimiter.

Improper matrix function.

No subscript where expected.

May not invert or transpose matrix into self.
Missing multiplication operator.

Improper matrix operator.

Matrix may not be both operand and result of matrix multiplication.
Missing left parenthesis.

Missing right parenthesis.

Operand not recognized.

Defined array missing subscript part.

Missing array identifier.

Missing or bad integer.

Non -blank characters following statement's logical end.
Out of storage during syntax phase.

Punched Tape Reader not ready.

Doubly defined function.

FOR statement has no matching NEXT statement.
NEXT statement has no matching FOR statement.
Out of storage for symbol table.

Array appears with inconsistent dimensions.

BASIC 2-17




44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Last statement is not END.

Array doubly dimensioned.

Number of dimensions not obvious.

Array too large.

Out of storage during array allocation.
Subscript exceeds bound.

Accessed operand has undefined value.
Non-integer power of negative number.
Zero to zero power.

Missing statement.

Gosubs nested 10 deep.

RETURN finds no address.

Out of data.

Out of storage during execution.

Dynamic array exceeds allocated storage.
Dimensions not compatible.

Matrix operand contains undefined element.
Singular or nearly singular matrix.
Trigonometric function argument is too large.
Attempted square root of negative argument.

Attempted log of negative argument.

The following errors are warning only, execution continues.

65
66
67
68
69.
70

2-18 BASIC

Numerical overflow, result taken to be + or -infinity.
Numerical underflow, result taken to be zero.

Log of zero taken to be -infinity.

EXP overflows, result taken to be +infinity.

Division by zero, result taken to be + or -infinity.

Zero raised to negative power, result taken to be +infinity.




USING THE HP BASIC SYSTEM -
. o

To use the BASIC system, you load the tape into the computer, start execution of
the system, and begin typing your program when the system types "READY." If
desired, the program may also be entered from the Punched Tape Reader.

OPERATING INSTRUCTIONS
Load BASIC using the Basic Binary Loader.
1. Place BASIC binarytape in the Standard Input Unit (e. g., Punched Tape Reader).

2. Set Switch Register to starting address of Basic Binary Loader: 017700

3. Press LOAD ADDRESS.

4. Set Loader switch to ENABLED. (On 2114A: LOADER ENABLE to ON.)
5. Press PRESET.

6. Press RUN.

7. When the computer halts with T-Register containing 102077, the BASIC tape is
loaded. Set Loader switch to PROTECTED. (2114A: LOADER ENABLE to
NORMAL.)

Set Switch Register to starting address of BASIC:
000100

Press LOAD ADDRESS and Run.
When the system types READY, begin typing program. Terminate each line with a
CARRIAGE RETURN. (When the system is ready to accept a new line, it issues a
LINE FEED.)

If errors are made while typing the program, they can be corrected by one of the
following:

1. To delete one or more characters that have just been typed, press < for each
character, then type in the correct characters.

2. Todelete the current line, press ALT MODE or ESC, and type the correct line.

3. To correct a previously typed line, retype the entire line starting with the line
number.

4. To delete a previously typed line, type the line number followed by a CARRIAGE
RETURN.

BASIC A-1




CONTROL COMMANDS

There are several commands that may be given to the computer by typing the com-
mand at the start of a new line (no line number) and following the command with a
CARRIAGE RETURN.

STOP Stops all operations at once. When the teletypewriter is typing, depress-
ing any key will execute the STOP command. When the system is ready
to accept further input, it types "READY"'.

RUN Begins the computation of a program.

SCRATCH Destroys the problem currently being worked on; it gives the user a
""clean sheet" to workon. Whenthe system is ready to accepta new
program, it types "READY. "

LIST Causes an up-to-date listing of the program to be typed out.

LIST XXXX Causes an up-to-date listing of the program to be typed out begin-
ning at line number XXXX and continuing to the end. T

TAPE Informs the system that the program will be entered through the
teletype reader. Asthe program tape will have line feeds following
carriage returns, the feedback of a line feed after each statement
will be suppressed to avoid double spacing between lines of the
program.

PLIST Causes an up-to-date copy of the program with leader, trailer tobe
punched on the High Speed Tape Punch. Thistape may be saved and
reloaded to execute the program at a later date.

PTAPE Causes the system to read in the program from the Punched Tape
Photoreader. @

D If this commandis given to a system which does not have a High Speed Tape
Punch, the program is listed on the teletype preceded and followed by blank
characters. Therefore to obtain a listing for debugging purposes type LIST,
to obtain a copy of the program on paper tape for future use turn onthe punch
device appropriate to the system and type PLIST.

2, If this commandis givento a system which does not have a Photoreader, the

4 STOP i L
system will type READY and await further input from the teletype.

T The last few characters of statements whose listing exceeds 72 characters may not
show on the listing but they are not lost internally.

A-2 BASIC



CALL AND WAIT STATEMENTS B
e i RS 5 L OB S R e

HP BASIC provides two additional statements for use in a program.

WAIT

The WAIT statement extends BASIC to allow the introduction of delays into a pro-
gram. Execution of WAIT (formula) causes the program to wait for the number of
milliseconds, up to 32767, specified by the value of the formula. This is not precise
because it does not take into account the time required to evaluate the formula.

CALL

The CALL statement is a provision of HP BASIC for interfacing absolute assembly
language subroutines, typically input-output drivers, which can be added to the
standard system to create specialized configurations. When executing a CALL
statement, BASIC transfers control to an absolute assembly language subroutine
which hasbeen appended tothe standard system. Once this transfer has taken place,
the subroutine is in complete control of the computer and is at liberty to alter any
part of core including the system itself. To minimize the danger of destroying the
system by such an alteration, only those programmers who are proficient in abso-
lute assembly language programming should attempt to append CALL statement
subroutines to the standard system.

Subroutines which havebeen appended to BASIC can be accessed in a BASIC program
through a statement of the form:

CALL (<subroutine number>, <parameter list>).

The subroutine number is a positive integer specifying the desired subroutine, if no
such numbered subroutine exists the statement will be rejected by the syntax ana-
lyzer. The parameters, separated by commas, may be any formulas and their
number is dependentupon the subroutine called. As an example, suppose thata sub-
routine designated by 5 has been appended to the system. Its function is to take
readings from an A to D subsystem and store them in an array. The parameters
specify the array into which the values are tobe inserted, the channel number of the
first point to be measured, the setup for the A to D converter and the number of
points to be measured. A representative call might be as follows:

20 CALL (5, A[1], 1, 1188, 1’0)
&

Number of points
A to D setup

Starting channel number

First element of data array

Subroutine number

BASIC B-1




USing such statements, it 1s very important that correct parameters be supplied.

rchanging the first and second parameters could result in the destruction of the
core-resident BASIC system, unless special precautions have been taken by the
writer of the called subroutine.

PREPARATION OF SPECIAL SYSTEMS

Since subroutines accessed by CALL statements are a part of the BASIC system
rather than a part of the user's BASIC program, they may be included on the com-
posite tape produced by PBS. This can be accomplished by following the instruc-
tions given in Appendix E except that the absolute assembly binary tape of the sub-
routines is loaded between steps 2. and 3. The binary tape from step 8. replaces
the normal BASIC system tape.

BASIC accesses called subroutines through a table containing linkage information.
Entries in the table, one per subroutine, are two words in length. Bits 5-0 of the
first word contain the number identifying the subroutine (chosen freely from 1 to77
inclusive) and bits 15-8 contain the number of parameters passed to the subroutiné
(CALL statements with an incorrect number of parameters will be rejected by the
syntax analyzer). The second word contains the absolute address of the entry point
of the subroutine (control is transferred via a JSB). Although subroutine numbers
need not be assigned in any particular order, all entries in the table must be con-
tiguous. An acceptable auxiliary tape contains the following:

1) An ORG statement to origin the program at an address greater than that of the
last word of the BASIC system. The address of this last word + 1 is contained in
location 110, of the standard BASIC system. Hence, a suitable lower limit for the
origin address can be determined by loading BASIC and examining location 1108.

2) The subroutine linkage table described above.

3) The assembly language subroutines.

4) Code to set the following linkage addresses:

a) In location 1108 put the address of the last word + 1 used in the auxiliary
tape.

b) In location 1218 put the address of the first word of the subroutine linkage
table.

c¢) In location 1228 put the address of the last word + 1 of the subroutine link-
age table.

Assume that location 110, of the standard BASIC system contains 134058. An
acceptable auxiliary tape coul% be assembled from the following code:

ORG 13405B

SBTBL OCT 2406 Subroutine 6 has 5 parameters
DEF SB6
OCT 1421 Subroutine 17 has 3 parameters
DEF SB17

B-2 BASIC

S ———



ENDTB EQU * + 1
SB6 NOP

Subroutine #6 body

JMP SB6, I
SB17 NOP

Subroutine #17 body

JMP SB17, I

LSTWD EQU * + 1
ORG 110B
DEF LSTWD
ORG 121B
DEF SBTBL
DEF ENDTB
END

Acceptable calls to subroutines SB6 and SB17 might be

CALL (6, A, B, 1, N*3, SIN(X + Y))
CALL (17, A[1], 5, N)
WARNING

Location 111, of the standard BASIC system contains
the address of the last word of available memory. It
is not possible to create a system which requires more
space than that existingbetween the addresses in loca-
tions 110,and 111,. Systems using all or most of this
space leave verylittle space for the user of the system.

INTERNAL DESIGN CONSIDERATIONS FOR CALL SUBROUTINES

The parameters of a CALL statement provide the dynamic link between BASIC and
the called subroutine. Prior to transferring control to the subroutine, BASIC eval-
uates the parameters and stacks the addresses of the results. Upon entering the
subroutine, the A-register contains the address of this stack (i. e., the address of
the addresses of the values of the parameters). The A-register initially points to
the address of the first parameter; successively decrementing the A-register causes
it to point to successive parameter addresses. A typical situation follows:

kison 3rd parameter address 17302  A-register upon
entry to called
it 2nd parameter address Parametgr subroutine.
address list
17302

Ist parameter address

The parameter addresses passed by BASIC give the subroutine access to values in
the BASIC program. The only way a called subroutine can transmit its results to a
BASIC program is to store through the address of a parameter.

BASIC B-3




—

Transmittal of quantities of data between a BASIC program and a called subroutine
1s most conveniently handled through arrays. Since only addresses are passed to a
subroutine, an array parameter must be an element of the array (in general this
would be the first element of the array). When using arrays in this manner, it is
important to remember that arrays are stored by rows, and that each element is a
floating point number occupying two words. Hence, if an array A has M columns
per row, the address of A[I, J] is (address A[1,1] +2(M(I-1) + (J-1)).

It may be necessary or desirable for a called subroutine to output on the teletype.
This may be done byloading a buffer address into the B-register, a character count
into the A-register, and executing a JSB 102B, I. The referenced block of core will .
be interpreted as an ASCII string and output accordingly, followed by a carriage re-
turn and line feed.

SYSTEM PROTECTION

Whenever data is transferred from a called subroutine throu gh the address of a
parameter, there is a danger that the BASIC system or users program might be
destroyed. This situation can arise when parameters are specified incorrectly or
insufficient space is allocated in a data array. For example, constants (e.g. 2 or
-1.1) in a BASIC program are stored in the program as they appear, therefore
storing through the address of a constant parameter will change the actual constant
inthe CALL statement. A subsequent execution of that statement may lead to strange
results. A parameter that is an expression (e.g. A & B or NOT A AND B) will be
evaluated and the result placed in a temporary location. Since the parameter ad-
dress references this temporary, storing into it will not harm the BASIC system or
program. However, the value stored there is lost to the BASIC program. If a
called subroutine stores more values in an array than the array can hold, the re-
sulting overflow of data may destroy the BASIC system or program. To provide
some protection against these dangers, users of CALL statements should be cau-
tioned against the danger of using unsuitable parameters in CALL statements (espe-
cially against rsing a simple variable or a constant where an array element is ex-
pected). Also, when using arrays as parameters it is good practice to include the
dimensions of the array as additional parameters to allow a means of checking
within the subroutine.

A really effective measure of protection is available at the cost of additional pro-
gramming effort. BASIC contains sets of pointers delimiting the areas of memory
within which different types of parameters exist. By checking parameter addresses
against these bounds, the subroutine can verify that they are of the expected type.
If X represents the parameter address, the following applies:

a) Constant parameter (112B) <X <(113B)

b) Simple variable parameter (116B) <X <(117B)

¢) Array parameter 1) In common storage (110B) <X <(112B)
2) Not in common storage (113B) <X <(115B)

d) Expression parameter (115B) <X <(1120B)

where (112B) etc. means the contents of location number octal 112.

B-4 BASIC



LOGICAL OPERATORS IN THE BASIC LANGUAGE C
e e e S A B S SR S s o TP o e

HP BASIC extends the concept of the formula to include logical operators. Included
are the familiar relational operators =, # (not equal), <, >, <= (less thanor equal),
and > = (greater than or equal) and the Boolean operators AND, OR, and NOT. With
the exception of NOT, which takes the following operand as its single argument, all
of these are binary operators. In a formula the binary operators have a lower pri-
ority than any of the arithmetic operators t, *, /, +, and -. Among the binary
operators the priority in ascending order is OR, AND, and the relationdl operators
(all of equal priority). NOT has the same priority as the unary + and unary -. Thus

NOT A + B = C OR SGN(K) AND SGN(J)
is equivalent to

(((NOT A) + B) = C) OR (SGN(K) AND SGN(J)).
The relational operators take algebraic numbers as arguments and return 0 (false)
or 1 (true) according to the relationship existing between their arguments. Thus
3< 2 evaluates to 0 and A # 0 evaluates to1 if A has a non-zero value. The Boolean

operators consider their arguments as zero (false) or non-zero (true) and return 0
or 1 as follows:

AND OR NOT
Arg 1 Arg 2 Result Arg 1 Arg 2 Result Arg Result
non-zero| non-zero 1 non-zero | non-zero 1 non-zero 0
non-zero Zero 0 non-zero Zero 1 zero 1
Zero non-zero 0 Zero non-zero 1
Zero Zero 0 Zero Zero 0

Thus 3 and 1 evaluates to 1 while NOT -3 AND 0 evaluates to 0. It is important to
realize that A< B < C is not equivalent to A< BANDB<C. If A= -3, B=~2
and C = 1/2 the former evaluates as (-3 < -2) < 1/2 or 0 (false) whereas the latter
evaluates as (-3 < -2) AND (-2 < 1/2) or 1 (true).

BASIC C-1




BASIC SYNTAX IN BACKUS NORMAL FORM D

T R R T L T AR e e e R T R T

The syntax of HP BASIC is described in Backus Normal Form through the use of
several metalinguistic symbols. Quantities within < and > are metalinguistic vari-
ables representing a syntactic class. The symbol '::" means "is defined as" and
connects the metalinguistic variable on the left with its definition on the right.
Multiple definitions of a metalinguistic variable are separated by the symbol " | b
meaning "or'". All capital letters and symbols not enclosed in < and > are actual
charactersas they appear in the language (e. g., RESTORE or <integer>.<integer>).
Uncapitalized letters represent English language expositions such as carriage re-
turn. Juxtaposition of quantities in a definition implies juxtaposition in the lan-
guage; all BASIC punctuation appears explicitly.

Example: <integer>::=<digit>| <integer> <digit> explains that an <integer> is
either a <digit> or an <integer> immediately followed by a <digit>. (Remember
that blanks in BASIC only count within a character string, so that 1 23 is the same
as 123.) It is easy to see that an integer begins with a digit and absorbs digits to
its right one by one until it finds a non-digit character.

1)

<basic program>::= <program statement>| <basic programj <program statement>(
<program statement>::= <sequence number><basic statement> carriage return
<sequence number>::= <integer>(2)
<basic statement>::= <let statement>| <dim statement>|<com statement |
<def statement>|<rem statement>|<go to statements|
<if statement>|<for statement>|<next statement>|<gosub statements|
<return statement>\<end statement>]<stop statement>f

<wait statement>|<call statement>|<data statements |

<read statement>\ <restore statement> |<input statements |
<print statement>[ <mat statement>

<let statement>::= <let head> <formula>

<let head>::= LET <variable> = | <let head> <variable> =

<formula>::= <conjunction>\<formula> OR <conjunction>

<conjunction>::= <boolean primary> | <conjunction> AND <boolean primary>

<boolean primary>::= <arithmetic expression>!

<boolean primary> <relational operator> <arithmetic expression>

D-1 BASIC



thmetic expression>::= <term arithmetic expression
arithmetic expression> - <term
<term>::= <factor>|<term> * <factor>| <term>/ <factor>
<factor>::= <primary>{<sign> \primary>’NOT <primary>
<primaryy::= <operand>‘ <primary> <operands>

e
3

<relational operator>::= >|<|>=|<=|=|#
<operand>::= < variable>|<unsigned number> | <system function>
<function> } <formula operand>
<variable>::= <simple variable>|<subscripted variable>
<simple variable>::= <1etter>[ <letter> <digit>
<subscripted variable>::= <array identifier> <subscript head>
<subscript> <right bracket>
<array identifier>::= <letter>
<subscript head>::= <left bracket>|<left bracket> <subscript>,
<subscript>::= <formula>
<letter>::= A|B|C|D|E|F|G|H|1|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X]|Y|Z
<digit>::= 0|1]2|3|4|5|6|7|8]9
<left bracket>::= (||
<right bracket>::= )|
<signyi= +|-
<unsigned number>::= <decimal part>\ <decimal part> <exponent>
<decimal part>::= <integer>|<integer>.|<integer>.<integers|. <integers
<integer>::= <digit>! <integer> <digit>
<exponent>::= E<integer>| E<sign> <integer>
<system function>::= <system function name> <parameter part>
<system function name>::= SIN|COS|TAN|ATN|EXP|LOG|ABS|SQR|INT|RND|SGN
<parameter part>::= <left bracket> <actual parameter> <right bracket>
<actual parameter>::= <formula>
<function>::= FN<letter> <parameter part>
<formula operand>::= <left bracket> <formula> <right bracket>
<dim statement>::= DIM <formal array list>
<formal array list>::= <formal array>l<formal array list>, <formal array>
<formal array>::= <array identifier> <formal bound head> <formal bound>
<right bracket>

<formal bound head>::= <left bracket>| <left bracket> <formal bound>,

BASIC D-2




<formal bound>::= <integer>(3)

<com statement>::= COM <formal array list>

<def statement>::= DEF FN<letter> <left bracket> <formal parameter>
<right bracket>=<formula>

<formal parameter>::= <simple variable>

<rem statement>::= REM<character string>

<character string>::= <character>l<character string> <character>

<character>::= any teletype character except carriage return, alt mode, escape,

rubout, or line feed

<go to statement>::= GO TO<sequence number>

<if statement>::= IF<formulas THEN <sequence number>

<for statement>::= <for head>|<for head>STEP <step size>

<for head>::= FOR <for variable>= <initial value>TO<limit value>

<for variable>::= <simple variables

<initial value>::= <formula>

<limit value>::= <formula>

<step size>::= <formula>

<next statement>::= NEXT <for variable>

<gosub statement>::= GOSUB <sequence number>

<return statement>::= RETURN

<end statement>::= END

<stop statement>::= STOP

<wait statement>::= WAIT <parameter part>

<call statement>::= CALL<call head> <right bracket>

<call head>::= <left bracket> <driver number>|<call heads, <actual parameter>

<data statement>::= DATA <constant>|<data statements, <constant>

<constant>::= <unsigned number>l <sign> <unsigned number>

<read statement>::= READ <variable list>

<variable list>::= <variable>|<variable list>, <variable>

<restore statement>::= RESTORE

<input statement>::= INPUT <variable list>

<print head> | <print heads <print formulas

I

<print statement>::
<print head>::= PRINT | <print heads> <print parts
<print part>::= <string>|<string> <delimiters|<print formulas <delimiters

<print formula> <string>| <print formula><string> <delimiter>

D-3 BASIC



string>::= '"<character string>" (4)

<delimiter>::= | [;

<print formula>::= <formula>| TAB <parameter part>

<mat statement>::= MAT <mat body>

<mat body>::= <mat read>|<mat print>|<mat replacement>

<mat read>::= READ<actual array>| <mat read>, <actual array>

<actual array>::= <array identiﬁer>|<array identifier><bound part>

<bound part>::= <actual bound head> <actual bound> <right bracket>

<actual bound head>::= <left bracket>|<left brackets <actual bound>,

<actual bound>::= <formula>

<mat print>::= PRINT <mat print part>] PRINT <mat print part> <delimiter>

<mat print part>::= <array identifier>[ <mat print part> <delimiter> <array identifier

<mat replacement>: := <array identifier>= <mat formula>

<mat formula>::= <array identifier>;| <mat function>}<array identifier> <mat operator
<array identifier>f<f0rmula operand>* <array identifier>

<mat function>::= <mat initialization> | <mat initializations <bound part> |
INV <array parameter>! TRN <array parameters

<mat initialization>::= ZER|CON|IDN (5)

<array parameter>::= <left bracket> <array identifiery <right bracket>(6)

<mat operatory::= +|-|*(7)

(1) The <com statement>, if any exists, must be the first statement presented
and have the lowest sequence number.

A sequence number may not exceed 9999 and must be non-zero.

A formal bound may not exceed 255 and must be non-zero.

Strings may not contain the quote character ™).

A <bound part> for an IDN must be doubly subscripted.

An array may not be inverted or transposed into itself.

An array may not be replaced by itself multiplied by another array.

P e e e ey
I DD U bW DN
N N e e e

BASIC D-4




PREPARE BASIC SYSTEM PROGRAM (PBS) E

The Prepare BASIC System Program prepares a composite binary tape containing
configured system input/output drivers, the significant locations in the system
linkage area and, optionally, the BASIC compiler.

PBS is an absolute program containing unconfigured teletype, photo reader and
punch drivers. The BASIC compiler will be included on the composite tape if it is
loaded along with PBS by the Binary Loader.

When initiated, PBS requests I/O assignments for the teletype, photo reader and
punch, configures the drivers in accordance with these assignments, and punches

a binary tape containing the configured drivers and the BASIC compiler, if loaded.
Multiple copies of this tape may be obtained.

OPERATING PROCEDURES FOR PBS

The system on which the composite tape is prepared must have a teletype ASR 33
or 35 in the same I/O channels as that of the system on which the compiler is to
run. The tape is prepared in the following manner:

1. Load PBS using the Binary Loader.
2. Load the BASIC compiler, if desired.
3. Set the switch register to 000002. Press Load Address.

4. Set switches 5-0 of the switch register to the lower numbered channel assigned
to the teletype.

5. Press Run.
6. PBS outputs the following request on the teletype:
PHOTO READER I/O ADDRESS?

Respond by inputting via the teletype keyboard the I/O channel number assigned
to the photoreader followed by a carriage return . If there is no photo-
reader, type a only.

7. PBS outputs the following request on the teletype:
PUNCH I/O ADDRESS?

Respond by inputting via the teletype keyboard the I/O channel number assigned
to the punch followed by a . If there is no punch, type a only.

E-1BASIC

A il - &



Preparatory to punching the composite tape, PBS inquires if there is a high
speed punch on the system, which is being used to prepare the tape, by out-
putting the request:

SYSTEM DUMP I/0O ADDRESS ?

a) If there is a high speed punch on the system, input its I/O channel number
on the keyboard following by a . PBS then proceeds to punch the
composite tape on the high speed punch.

[Note if the preparation is performed on the computer on which BASIC is
to run, the punch address given in 8 will be the same as that given in 7. |

b) If there is no high speed punch on the system, input a only. PBS
prints:

TURN ON TTY PUNCH, PRESS RUN
and halts the computer with 102011 showing on the T-register.

Turn on the TTY punch as instructed. When Run is pressed, PBS will proceed
to punch the composite tape on the TTY punch.

When punching is complete, PBS will halt the computer with 102077 showing on
the T-register. Further copies of the tape may be obtained by pressing Run
after such a halt.

The following error conditions are detected by PBS:
1. 1If, in step 4, switches 5-0 of the switch register are set to a value less
than 10, PSB will halt the computer with 102055 showing on the T-register.

To recover, set the switch register to the correct number and press Run.

2. Ifin steps 6, 7, 8 a number less than 108 or greater than 77
will output the message:

8 is input PSB

INVALID I/O ADDRESS
To recover, input the correct number via the keyboard.

3. A channel number may consist only of two digits, no preceding or trailing
blanks or other characters.

BASIC E-2




5950-8313

HEWLETT% PACKARD

A Pocket Guide to
Hewlett-Packard Computers

HEWLETT-PACKARD COMPANY 11000 WOLFE ROAD, CUPERTINO, CALIFORNIA 95014




