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Introduction
The IME 86S is a desktop calculator from the mid-1960s.  A digitised copy of the original  
manufacturer schematic was obtained from the DoPECC website [https://dopecc.net].  This 
original IME schematic is limited to a representation of the discrete electronics.  The IME 
schematic has been re-interpreted to produce a logic schematic with block diagram. This 
commentary has been produced from analysis of the schematics.

[reference]:  Text within square brackets is a reference to some page, figure or logic element 
in the new logic schematic.  E.g.  [logic.15]  [17.1PL].

Architectural Overview

The IME 86S is  a  digit-serial  design.  At  a  functional  architectural  level,  data  processing 
involves 7 registers, each holding a 16-digit signed decimal number comprised of 4-bit BCD-
encoded digits, and several decade counters.  Arithmetic is performed in the counters via 
counting algorithms, not binary arithmetic.

The digits of the 7 registers are implemented in a magnetic core memory while the signs are 
held in a bank of flip-flops.

The  control  and  sequencing  of  the  higher-level  arithmetic  and  entry  operations  is 
implemented with assorted flags and two sequence counters which execute micro-programs.
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Electronic Implementation of Logic
The IME 86S is implemented in discrete Ge solid-state electronics.  Active components are 
Ge transistors, primarily PNP.  As a PNP-based design the main power supply for the logic is 
positive-ground, with Vcc = –12V.  A base-bias supply of +6V for the logic is also present to  
ensure transistors are pulled into cutoff,  to compensate for the forward voltage drop from 
diodes in the logic.  The transistors are used for flip-flops, inverters, a few buffers, and in 
inverting 'pulsers'.

The internal construction of logic elements is presented on [logic.22::24].

Logic Nomenclature

• Logic 0 = 0V

• Logic 1 = –V

• 0-edge = transition from logic 1 to 0, positive-going voltage edge

• 1-edge = transition from logic 0 to 1, negative-going voltage edge

Gates

Gates are constructed with Ge diodes, in a form which may be called "Diode-AND-OR-Logic". 
This form allows a limited degree of cascading of gates without active devices in-between. 
'Wired' gates are also used.

Flip-Flops

Flip-flops  were  expensive  to  implement  in  discrete  form,  giving  rise  to  optimisations  that 
appear quite odd in the post-discrete era of integrated circuity.

Capacitor triggering was common.  The capacitive storage and RC time constants provide a 
storage element prior  to the active transistor  flip-flop,  in a limited sense functioning as a 
master stage to an active slave stage.  The capacitive storage allows a zero-to-negative hold 
time for the flip-flop.  At the time, this was more economic than full M-S flip-flops.

IME 86S flip-flops are formed starting with a standard base-portion of two transistors and 
associated loopback and bias components.  A range of input constructs may then be applied 
to the base-portion, in single or in multiple.

Flip-flop construction is presented on [logic.24].

Pulsers & Asynchronism

Producing a fully synchronous design can be costly, with doubled flip-flops and more gates. 
In avoiding this, the IME-86S design - as with other discrete-electronic logic designs - has 
significant asynchronous aspects.  A readily apparent example of this is the counters all being 
of ripple form.

One of the techniques used in asynchronous designs is the introduction of a circuit element 
which will be called here 'pulsers'.  Pulsers produce a pulse at their output when an edge 
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occurs at their input.  These may be used for objectives such as:

• To delay an edge briefly to bridge over a period in which glitches may be occurring, 
with the delayed edge then triggering some action.

• Producing  a  brief  pulse  to  quickly  perform some action.   For  example,  at  the 
beginning of a subroutine, QBEN is asserted.  The 1-edge of that assertion triggers 
[8.8PP] to produce a quick 0-pulse to clear the TC Counter in preparation for the 
subroutine.

• To disambiguate actions triggerred by the same event.

• Pulser types There are several types of pulsers to provide different edge response 
and pulse polarity.  Some pulsers also have a gate input which must be 
enabled first for a pulse to be propagated out when an edge occurs.

• Tuning Pulsers do not all produce pulses of the same period.  There was some 
amount  of  'tuning'  performed  in  the  design  to  achieve  the  desired 
objective of each pulser, as evidenced by the range of RC values used 
[logic.23].

Semiconductor Replacement

The Ge diodes and transistors of the implementation may be difficult or inconvenient to obtain 
more than 50 years after the production of the design.  This isn't really much of an issue in 
effecting repairs as Si tends to be fine for replacements.

• Diodes The higher forward junction voltage of Si versus Ge might give rise to a 
concern around threshold voltages.

The concern is that for AND-form gates if the Vf drop were too high, a 0 
wouldn’t be able to shut off the transistor the gate eventually feeds into. 
This cascades where an AND gate directly feeds another AND gate, with 
an accumulating voltage drop from diodes in series.  'AND gate' here 
includes many of the multiple inputs of flip-flops which are essentially 
negative-logic OR gates (AND-form).

However,  the  bases  of  most  transistors  are  pulled  down  well  below 
conduction by a bias resistor to V+6.  This provides some headroom 
before increased Vf drop would leave a transistor conducting.

Simple silicon switching diodes such as 1N914 or  1N4148 are likely 
acceptable for most or many gate diodes.

Schottky diodes with their low Vf similar to Ge are the other option.  The 
BAT46 is one suggestion, and was used in repairs of one unit.

• Transistors The  following  standard  Si  transistors  were  used  for  replacements  in 
repairs of one unit:

• 2N3906: logic transistors (flip-flops, inverters, etc.)
• 2N2907: core drivers
• MPSA92: Nixie cathode drivers
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Timing & Data Elements

Timing

A timing diagram for the major clock signals is presented on [logic.21].

• Master clock Timing begins with an astable flip-flop operating at ~ 89 KHz generating 
signal ØM.

• Digit period The master clock triggers a 4-bit binary ripple counter: the ØC Counter 
[FC1,2,4,8].  The 16-count cycle produced by this counter constitutes a 
digit cycle or period (ØD) during which a digit of a number is processed.

The 16 ØM pulses occurring in a digit cycle are used to trigger various 
actions.  The primary aspect of the digit cycle is to read a digit of each of 
two operands from core,  optionally perform arithmetic with them, and 
restore them to core:

• ØR:  Two pulses in ØR read a digit of each operand from core.

• ØA:  A span of 10 ØM pulses used for the decade counting 
arithmetic.

• ØW:  Two pulses restore the two operand digits to core, one of 
which may have been modified by arithmetic.

ØGS alternates in-between the two pulses of ØR and ØW to distinguish 
the selection of the two operand registers.

• Digit-of-number The 0-edge of FC8 represents the end of one digit and the beginning of 
another.  This edge clocks another 4-bit binary ripple counter: the ØD 
Counter [FD1,2,4,8].  The 16 states of this counter define the digits of a 
number, from ØD0 (LSD) to ØD15 (MSD) to constitute a number cycle.

• Up/down The  ØD Counter  can  count  up  or  down,  so  can  scan  or  process  a 
number  from  LSD  to  MSD  or  MSD  to  LSD.   The  default  counting 
direction is up, LSD to MSD  [29.10Nv].

• ØN A 5th flip-flop [FØN] in the ØD Counter pauses the clocking of the counter 
for one digit period (ØN) at the end of number cycles.  The ØD Counter 
is 0 during ØN.

Digit Memory (Core)

The digits of the numbers held by the 7 registers are stored in a small core memory.

• Encoding The digits are encoded in standard 4-bit 1248 BCD code.

• Physical The core memory is physically organised in a 2D planar array of 16 • (8 • 
4).

• Logical Logically,  the  core  memory  is  a  3D  array  of  8  registers,  by  16 
digits/register, by 4 bits/digit. However, of the 8 register planes, only 7 
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are used - the 8th is spare.

• Electrical Electrically, the form is what was referred to in the era of core memory 
as "2-1/2 D".

In  the  common 3-Dimensional  form of  core  memory,  2D half-current 
addressing is used, with the 3rd dimension of bit-arrays sharing 2 sets of 
address drivers for the wires on both axes of the bit-arrays.  Each bit-
array has a 3rd inhibit wire to distinguish between bits, and the sense 
function is  performed with a fourth wire for  each bit-array,  or  in later 
designs inhibit and sense share a 3rd wire.

In  the 2-1/2D form,  2D half-current  addressing is  used with  a  set  of 
address drivers/wires shared on only one axis.  On the other axis each 
bit-array has an independant set of drivers/wires with the drivers of each 
set having a common gating input to distinguish control of the bits.

This  2-12D  form  requires  more  drivers  than  3D  but  simplifies  the 
threading of the cores.

• Shared sense With the 2-1/2D form, a separate sense wire may be avoided.  Rather, 
sensing  can  be  accomplished  using  the  address  wires  of  the 
independant axis.  This is made feasible by differentiating the timing of 
the address pulses on the two axes.

In the IME86, the register/row wires are used for both addressing and 
sensing.  During a Read of core, read current on the register/row wires is 
enabled for period ØRL which is longer than the period of ØR used for 
the digit/column wires.  The magnetic flip which will produce the sense 
pulse is triggered by ØR on the digit/column wires.  These wires are 
orthogonal to the register/row wires which are observed for the sense 
pulses,  so  the  magnetic  field  of  the  triggering  pulse  has  minimal 
inductive  influence on the register  wires  and the small  sense pulses 
remain distinguishable from the triggering pulse.

• Double winding The row and column wires are threaded through the cores twice, having 
been looped back underneath the core mat.  This permits halving the 
current  requirement  of  the  drivers  in  achieving  the  needed magnetic 
influence,  as  well  as  doubling  the  sense  pulse  level  into  the  sense 
amplifiers.

• Drive supply Core requires bidirectional current drive through the cores, one direction 
for clear/read, one for set/write.  This is accomplished in the IME 86 in a 
novel manner with the single –12V supply.  The address wires all have 
one end connected to a common point held at  –6V.  The drivers then 
can switch the other end to – 12V for one direction (clear/read) and to 
ground for the other direction (set/write).

The –6V however, is derived not from a typical dropping of the –12V 
supply,  but  by  what  amounts  to  a  charge  pump  driven  by  the  core 
accesses.

In the calculator application, the core accesses follow a persistent and 
regular pattern.  A capacitor [1000µF on V–6] between the –6V common 
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point and GND serves as the store for the charge pump.  During the 
clear/read accesses the driver end of address wires is taken to V–12 and 
current flows in one direction through the wires to charge the capacitor. 
During the set/write accesses the driver end is taken to GND and current 
flows in the other direction, discharging the capacitor.  A write always 
promptly follows a read so there is a near balance between charge and 
discharge of the capacitor.  Imbalance however, results from:

• Set/write does not drive current in the register/row wires for bits=0.
• Clear/read has a longer ØRL pulse on the register/row wires.

Both of these present an imbalance in favor of charging. To compensate, 
a shunt regulator [TP.7] controlled by differential pair [TP.5,6] is applied 
across the capacitor to bleed off excess charge and maintain the core 
common point at –6V.

Registers

The 7 registers are each comprised of its digits in core memory and a sign flag.

• Code Registers are identified internally by a 3-bit code:

Register Code GG~ BB~ AA~

R1 0 0 0 0

R3 1 0 0 1

R2 2 0 1 0

RT 3 0 1 1

R4 4 1 0 0

RA 5 1 0 1

RB 6 1 1 0

- 7 1 1 1

Note the coding here uses the 0-assert values.  Nearly all the register-
code signalling is done with these values.

The coding was chosen such that the values with only one zero bit are 
applied  to  the  A,  B  &  T  registers.   These  registers  are  frequently 
referenced  in  the  micro-programs,  the  single  zero  bit  reduces  the 
number of diodes needed for their referencing.

• Access At any given instant, one register can be accessed.  Accessing a register 
means  a  digit  of  that  register  will  be  read  or  written  during  a  core 
memory operation (single pulse of ØR or ØW).  There are two sources 
for selection of the register to be accessed:

• the GAA~,BB~,GG~ signals (collectively GGBA),

• the  3  current-register  flags  FAA,BB,GG  (collectively  FGBA) 
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[logic.17].  The current-register is the register being displayed.

By  default,  the  register  selected  for  access  is  the  current-register 
(FGBA).   The  selection  is  switched  to  GGBA by  assertion  of  GSEL 
[19.15Nv] which is subject to a variety of conditions.

• GGBA The GGBA signals are generated on demand by the procedure logic to 
access a specific register.

• FGBA The FGBA current-register flags can be loaded from either:

• the keyboard when the user selects a register for display,

• procedure logic such as for automatic selection of the T register 
for display at the completion of an operation.

• Decoding The 3-bit register code is partially decoded to a major-minor 1-of-2 & 1-
of-4 code [GMx].   These signals are used to select  both the register 
digits  in  core  and  the  register  sign  flag.   Further  decoding  to  the 
individual register is done in the core drivers and sign flags.

• Shifting The  digits  of  a  register  need  to  be  shifted  up  or  down  in  several 
procedures.  A shared facility performs this, involving the FGZ flag and 
the X & Z Decades.

• Enable Shifting is enabled by the shift signals GSL (left), GSR (right), and FESH 
for numeral-entry. These assert GSH [3.4Nv].

FGZ by default  is  held in reset,  and released from reset  by GSH=1. 
Once thus enabled, FGZ toggles at ØA1 which occurs in the digit cycle 
between the read and write of core.

In the first digit period, X is loaded with a digit value from core.  Z may 
be zero or  it  may have a non-0 value from activity  prior  to  the shift 
enable.

FGZ toggles to 1 on the first ØA1 after being enabled, asserting GZ and 
deasserting GX, so while X was loaded with the current digit from core, 
Z is written to that digit in core.

• Leap-frog In the next digit period, Z will be loaded from core, FGZ toggled to 0, and 
X written to core.  This leap-frogging with X & Z shifts the digit contents, 
continuing till GSH is deasserted.

• Direction The  shift  direction  is  determined  by  the  count  direction  of  the  ØD 
Counter.  ØD counts up by default, producing a left shift.  GSR assertion 
changes the ØD count direction to down for right shift.

• Fill Shift-Right may either zero-fill the MSD (GSRz) or recirculate the LSD 
into the MSD (GSRc).  When shifting right, the first digit period is ØD0, 
and ØDC then decrements to ØD15.  For GSRc, this moves the LSD 
into  the  MSD.   For  GSRz,  the  write  pulse  in  ØD15  is  suppressed 
[29.9NG].  The last digit write of moving digit 1 to digit 0 takes place 
during the ØN period when ØDC=0.
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• Transfer Some procedures require copying the contents of the current register to 
another  register.   This  is  performed by  asserting  GTR for  a  number 
cycle:

• GSEL will switch the accessed register.
• The FGBA register will be accessed when ØGS=0.
• The GGBA register will be accessed when ØGS=1.
• Sense pulses are disabled when ØGS=1.
• Decade switching is not in effect, so X is the only decade 

used in core accesses.

In consequence, during a digit cycle:

• On the 1st ØR pulse, X will be loaded with an FGBA digit.
• On the 2nd ØR pulse, the GGBA digit is read-accessed, 

clearing the cores, but any sense pulses do not affect X.
• On the 1st ØW pulse, X is restored to the FGBA digit.
• On the 2nd ØW pulse, X is written to the GGBA digit.

For  sign  transfer,  FSQ is  loaded with  the  sign  of  the  FGBA register 
(ØGS=0).  With GTR asserted, the FSQ outputs are gated to SETN and 
RESETN when ØGS=1, loading the GGBA sign with the FSQ value.

Sign Flags

The sign flags for the registers are provided by a bank of 7 flag flip-flops [FSA,B,T,1,2,3,4].

• Addressing The  sign  flags  are  addressed  by  the  same  GMx  signals  used  for 
addressing the register's digits in core memory.  The addressed sign flag 
becomes the target for modification by the SETN & RESETN signals, 
and becomes the source for the signal SN.

• Operand signs For operations involving multiple registers - where the register selection 
changes over the course of the operation - two further flags are used to 
hold the signs of the registers at issue [FSP,FSQ].

For signed arithmetic operations, FSP & FSQ are XOR'd to see if they 
differ.  If they do differ, GASUB is asserted [4.6Nv] and subtraction is 
performed rather than addition.

• Change sign The  FCS flag  detects  and  holds  whether  the  result  of  a  subtraction 
produced  a  negative  result.   At  the  end  of  a  subtract  (GASUB~=0) 
number cycle, if a borrow from the last digit is present (FYC=0), the 0-
edge of ØN sets FCS=1.

FCS is also set by a pressing of the Negative key.

With FCS=1, during ØN, FSP and FSP~ are gated to signals RESETN & 
SETN respectively - note the inversion.  FSP was earlier loaded with the 
sign of the current register. During the ØW pulse(s) of ØN, these signals 
are gated through to set or reset the sign of the current register, thus 
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flipping the sign.

Digit Decades X,Y,Z

Three 4-bit flip-flop registers are used for the processing of digits.

• X & Y During add/subtract number cycles, X and Y hold a digit from each of the 
two operand registers.  Both X & Y are wired as decade counters  to 
serve this end.  X is also used for shifting register digits and the multiplex 
display scanning.

• Z The Z Decade is actually wired simply as a binary counter.  It is used for 
shifting register digits, holding a numeral entered from the keyboard, and 
as a counter in resolving new digits during the MP/DV/SR procedures.

• Selection At any instant one of the three Decades is selected for loading-from and 
writing-to core memory.  By default, the X Decade is selected [GX].  The 
assertion of either GY or GZ deselects X and switches the selection to 
the according Y or Z.  Z is primarily selected for register-shift operations.

• 2 operands Y is selected in 2-operand arithmetic operations.  As with the Registers 
where ØGS is used to switch the accessed Register, so is ØGS used to 
switch the selected Decade.  Assertion of GXY enables the switching of 
the selection.  X is selected during the 1st of the ØR and ØW pulses, 
while Y is selected during the 2nd ØR and ØW pulses.

Arithmetic & the Digit Cycle

The arithmetic logic performs an addition or subtraction with the two operand digits in the X 
and Y Decades.  The operations performed are:

GASUB=0: Y = Y + X

GASUB=1: Y = Y – X

This  is  accomplished with  counting techniques,  not  binary-addition logic.   Performing the 
operation is tied tightly to the interior timing of the digit cycle.

• Reading A digit of the two operand registers must first be loaded from core into 
the X & Y Decades. 

At the beginning of the digit period, X & Y are cleared by the brief pulse 
of  ØPCL [30.12PH].   The 1st pulse of  ØR then triggers a core read. 
Sense pulses from the bits of the digit being read 1-set the flip-flops of X. 
The 2nd pulse of ØR triggers a core read from the other operand register 
to 1-set the flip-flops of Y.

The  selection  between the  two  operand  registers  being  read,  and  X 
versus Y being loaded, is controlled by ØGS and other control signals. 
ØGS toggles state between the two ØR pulses to change the selection. 

• Add By example, given X=7 and Y=5.  An operation condition enables the 
arithmetic logic [5.12Nv].  When ØA begins, FXR is released from reset. 

During ØA, gate XINC is enabled to allow 10 pulses of ØM through to 
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increment X.  X will roll over after 3 pulses, the rollover triggers FXR=1.

With FXR=1 and GASUB=0 (add), the gate YINC is enabled to allow ØM 
pulses to increment Y.  ØA ends after another 7 pulses, setting FXR=0 
and disabling incrementing of Y.

The net result when ØA ends is:

• X returns to  its  initial  value of  7  having been incremented 10 
times.

• Y has been incremented 7 times from 5, rolling over and ending 
at 2.

• The rollover of Y has set the Carry Flag FYC=1.

• Carry-in If there is a carry-in (FYC=1) from the previous digit, Y is incremented 
during  ØA1.   This  does  not  conflict  with  the  FXR-gated  increments 
because FXR will be enabled at the earliest at the 2nd pulse of ØA (X=9).

FYC is cleared at the end of ØA1, so is ready for a carry generation from 
the current digit, and again, prior to occasion for conflict.

• Subtract For subtraction, GASUB=1.  During ØA, the behaviour of X is the same. 

However,  incrementing  of  Y  is  now  enabled  while  FXR=0  with  the 
exception of  ØA1 [5.11Nd]  -  thus from the 2nd pulse of  ØA till  the X 
rollover.  The exception is tied up with the borrow strategy.

• Borrow A borrow necessitates  one less increment  of  Y.   The ØA1 exception 
produces  this  borrow  by  default.   As  the  carry  flag  produces  an 
increment of Y, if the carry flag is set such that its assertion indicates the 
lack of  need for  borrow,  the carry  increment  will  compensate for  the 
default borrow.

When subtracting, rollover of Y indicates  no borrow is necessary.  For 
example,  for  (5–2):  Y=5,X=2,  the  5  will  be  incremented  8  times 
producing  Y=3  and  FYC=1.  FYC  is  as  desired  for  providing  the 
compensating increment to the next digit.  For (5-6): Y=5,X=6, the 5 will 
be incremented 4 times producing Y=9 and FYC=0.  With FYC=0, the 
default borrow is effective in the next digit.

An initial increment of Y is generated for the first digit, this compensates 
for the missing increment in that digit.

• Writing After ØA completes, the two pulses of ØW restore the X digit  to one 
operand register - necessary due to the destructive read of core - and 
writes the modified Y digit  to the other operand register.  ØGS again 
alternates between the two pulses to change the register and Decade 
accessed.

DP Counter

The DP Counter (DPC) is a 4-bit binary up-down ripple counter.  It maintains the decimal point 
position as selected by the user with the shift-left and shift-right keys.  The counter value is 
modified only by the pressing of the shift keys, its value is otherwise static.  See the DP-Shift 
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procedure for more detail.

• Value The value in DPC corresponds to the tenths digit, not the units digit.  If 
the DP position is set to one fractional digit, DPC=0, as the LSD digit is 
processed and displayed during ØD0.  If the display is all digits integral, 
DPC=15.

• Comparator The value of DPC is continuously compared to the ØD Counter.  When 
they are equal, signal DP=ØD is asserted.  This is used, in part, to turn 
on  the  appropriate  DP  lamp  in  the  display  as  the  display  is  being 
multiplexed.

Tracking Counter

The Tracking Counter (TC) is another 4-bit binary up-down ripple counter.  It serves for two 
uses:

• Tracking the digit position during the Numeral-Entry procedure after the DP key 
has been pressed.

• As a loop counter to track progress during the MP/DV/SR procedures.

Procedure-specific  operation of  TC is  covered in  more depth in  the according procedure 
description.

• Direction The default count direction is down.  The  MP/DV/SR procedures may 
alter the direction to up.

• Clear TC  is  cleared  to  0  by  a  brief  pulse  [8.8PP]  when  the  Subroutine 
Sequence Counter QB is enabled.

• Comparator Like DPC, the value of TC is continuously compared to the ØD Counter. 
When they are equal, signal TC=ØD is asserted.

• TC=DP A further  comparison signal  of  TC and DPC is  generated.   During a 
number  cycle,  if  TC,  DP and  ØD all  become  equal,  FSC3  is  set  1 
asserting TC=DP.  This occurs at the end of the digit period when they 
were all equal.  TC=DP remains asserted until the beginning of the next 
number cycle when FSC3 is cleared 0.

12



Execution Elements

Procedures & Programs

A procedure is a sequence of actions taken to perform some function.  Procedures may be 
categorised into:

• Simple: Executed under the control of flags or keypress signals.
• Main Program: More-complex functions are performed by execution of a micro-

program. Main Programs are sequenced by the QM Counter.
• Sub Program: A main program may invoke a subroutine, sequenced by the QB 

Counter.

This leads to the following table of procedures:

Programmed
Procedure Simple Main Sub Select Signal
Idle • not EXEC
Display Select • KMEM
Clear General • FRS=1
DP Shift Left • FRS=3
DP Shift Right • FRS=2
Numeral Entry • FEEN
Negate • KNEG
AddA • PEQ•N•PEQp
AddC • PEQ•(N~)•PEQp
Multiply/Divide Queue • PMD•N
Multiply • PEQ•N•PMPp
Divide • PEQ•N•PDVp
Multiply/Divide Chain • PMD•N•PMPp, •PDVp
Raise Exponent 1 • PMM•(N~)•(Nn~)
Raise Exponent 2 • PMM•(N~)•Nn
Raise Complete • PEQ•(N~)•Nn
Square Root • PSR
?PostRoot • PEQ•N•PRRp
Multiply • BMP
Divide • BDV
Square Root • BSR

The procedure logic can be broadly broken into three parts:

• procedure selection logic,
• procedure enable logic,
• procedure execution logic.
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Procedure Selection

Which procedure is selected for execution is indicated by a set of flags, or for a few simple 
procedures a key state.  See the List of Procedures.

• FRS The keypresses for Clear-General and DP-Shifting are encoded into 2 
bits and recorded in the FRS1 & FRS2 flags.  These procedures share 
the requirement of  processing a set  of  registers.   See the according 
procedure section.

FRS2,1 Procedure

00 –

01 Clear-General

10 DP-Shift-Right

11 DP-Shift-Left

• FPa1,a2,b1,b2,N Selecting  the  procedure  for  the  more-complex  arithmetic  functions 
involves recognising certain key sequences of up to 3 steps.

• FPa1,a2 record the most-recent operation key pressed.
• FPb1,b2 record the preceding operation key pressed.
• FPN records whether a number preceded the most recent 
operation keypress (between the a & b operation keypresses).  The 
number may be a keyboard entry or a register display.

These  flags  are  decoded to  a  set  of  procedure-select  signals.   The 
signals  names  are  framed  in  the  keypress  order  with  most  recent 
leftmost, e.g.:

PEQ•N•PDVp DV was pressed, then a Number, then EQ.

PEQ•(N~)•PEQp EQ was pressed twice in a row.

'EQ' means any of the 5 Equals keys.

Procedure Enable & Execution

• Idle vs. Execution The idle state of the calculator is distinguished from execution by the 
signal EXEC.  EXEC is asserted initially by the flag FEX after a key is 
pressed.   FEX  synchronises  the  keypress  to  the  number  cycle  and 
ensures that EXEC is asserted for an integral count of number cycles. 
FEX (and EXEC) remain asserted while a key is pressed.

The Simple procedures are short  enough to be completed within the 
period of FEX. EXEC remains asserted while FEX is asserted.

For the Programmed operations, the QM sequence counter is invoked to 
leave its idle-0 state.  QM being non-0 sustains assertion of EXEC till the 
procedure  is  complete  (QM returns  to  0)  if  it  takes  longer  than  the 
keypress.
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• Procedure enable Procedure execution is initiated by a keypress. The Set-Gate input of 
FEX is normally 1 (disabled) while the Reset-Gate input is normally 0 
(enabled), so FEX is not asserted.  The pressing of a key flips the state 
of both  gate inputs, enabling FEX to assert on the 0-edge of the next 
ØN.  This situation persists while the key is pressed.

When  the  key  is  released  the  5µF  capacitor  at  FEX.SG~ begins  to 
charge, eventually disabling the Set-Gate input (1).  The reverse-biased 
BE junction of T3.13 acting as a zener presents a higher threshold to the 
inverter T3.1, thus there is a further delay before the Reset-Gate input 
flips back to 0 (enable).  Once it does so, FEX deasserts on the 1-edge 
of the next ØN.

• State transition State transitions or steps in a procedure are triggerred by the 0-edge of 
ØN.  The ØN period then, comes at the end of a state cycle, and state 
cycles are synchronous to the number cycle.  A register operation is an 
atomic event at this level.

Numerous actions are triggered by or in consequence of the 0-edge of 
ØN:  the  EXEC  flag,  the  procedure  selection  flags,  the  QM  &  QB 
Counters, the F31 & F32 phase flags, the Tracking Counter, etc.

Program Sequence Counters

The QM and QB Counters control sequencing of the Programmed procedures.

As counters, they follow a fixed sequence. The decoded output steps of these counters are 
gated with the procedure-select and other signals to determine the actions performed at a 
given step.  This contrasts with a more-canonical state-machine design with next-state logic 
producing a variable sequence of states.

• QM - Main QM is a 4-bit binary counter providing 16 steps or states.  The 16 states 
are  decoded  first  from  binary  to  two  1-of-4  sequences,  a  Major 
(QMA::D),  and a minor (QMa::d).   These major-minor sequences are 
then further decoded as necessary to arrive at a unique 1-of-16 state 
(QM00::15), an example being the QM=0 AND gate at the gating input of 
[16.4PL].

QM is the main control for arithmetic procedures.  QM normally sits in its 
idle 0 state.  When EXEC asserts for a programmed procedure, QM is 
incremented to 1 [16.2PL].  QM≠0 enables QM to be incremented on 
each number cycle [16.4PL].

The QM sequence does not loop - for main programs the sequence is 
traversed only once.  The sequence ends when QM rolls over to 0.

• QB - Subroutine QB is  a 3-bit  binary counter.  QB is  decoded in  a Major-minor  1-of-n 
scheme similar to that of QM.  QB is used to execute a sub-program in 
the course of the main program.  There are 3 sub-programs: BMP, BDV 
& BSR.

• QB - BMP/BDV The BMP & BDV subroutines are short enough that they do not require 
the 3rd QB bit. Only the QBa,b,c,d signals are used, providing 4 steps, 
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referred to as QB0::3.

There is however, a 5th state that occurs when the counter is held in 
reset and QBa is suppressed from asserting. This state will be referred 
to as QBN.  QBN does not have an explicit signal, it is distinguished by 
none of the QB-minor signals asserting.

• QB - BSR The BSR subroutine requires 8 steps, the 3 bits of QB are decoded to 8 
steps QB0::7.  The QBN state is not used.

• QB - ancillary use QB is also used to generate a register-selection sequence during the 
Clear-General and DP-Shift procedures.

• QB activity During  MP/DV/SR,  one  of  the  operation  signals  PMP,PDV,PSR  is 
asserted.  At step QM6 in the main sequence,  gating enables one of the 
sub-procedure signals BMP,BDV,BSR to assert [16.10,11,12Nv].

This latter assertion has two effects:

• QM is halted by disabling the ØN pulses to [16.4PL].

• QBEN is asserted [8.7Nv].  This enables QB, though it may 
not  yet  be  active  if  being  held  in  the  QBN state.   When 
activated, the counter is released from reset and increments 
on each number cycle.

Incrementing of QB can be stopped at some step by the assertion of 
QBLP.  Number cycles continue to be performed so execution loops at 
that step till QBLP is deasserted.

The QBN state  is  used in  the  BMP/BDV subroutines for  preparatory 
and/or  cleanup  activity  [8.9NG,8.10NG].   The  QB sequence  may  be 
terminated early by taking it to the QBN state.

• QB seq. looping During MP/DV/SR, the QB sequence loops (repeatedly passes through 
QB0) until flag F32 deasserts to produce a pulse [16.3PL] to increment 
QM  from  6  to  7.   QM≠6  deasserts  the  sub-procedure  signals, 
deasserting QBEN and resetting and disabling QB, and re-enables ØN 
incrementing of QM, allowing the main program to proceed.

Programming Logic

The micro-code for the programs is implemented with diodes forming NORN and OR gates. 
This can be construed into matrices as the presentation in the logic schematic illuminates to 
some degree, though there is no such matrix readily visible in the implementation.
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Simple Procedures

Idle

• Display During idle the default state of register selection is in effect [19.14Nd], 
this being the register indicated by the Current Register flags FGBA.

The default state of core memory read and write is also in effect, with 
GX asserted  [logic.14/32A-2].   GX being  asserted,  during  each  digit 
period, the X Decade is loaded from core and restored back to core. 
The  contents  of  X  are  presented  to  the  Nixie  numeral  decoder  for 
display.

The default counting of the ØD counter is also in effect, counting up. 

Display Select

Display-Select is executed to set which register is displayed in the Nixies.

• Start The  register-select  keypress  is  encoded  to  KGG,BB,AA (collectively 
KGBA)  and  KMEM  asserted  [logic.6].   KMEM  assertion  triggers  a 
FEX/EXEC cycle.

• Load FGBA EXEC assertion generates a pulse to clear FGBA [19.1PL].  With FEX 
asserted, the 0-edge of ØN pulses after the clear generate pulse(s) to 
set the FGBA bits from KGBA.

Clear General

Pressing the general C key clears the registers A, B & T.  Accomplishing this requires stepping 
through the digits of the 3 registers in sequence while clearing them, as well as clearing the 
sign flags for those registers.

• Select When EXEC is  asserted,  FRS is  loaded with  1,  selecting  the Clear-
General procedure for execution.  FRS≠0 asserts QBEN.

• Sequence QBEN being asserted releases QB from reset, enabling it to increment 
on every number cycle.  QB proceeds through its 8 steps.  As it does so, 
its sequence signals QBxx are encoded into a register-selection code:

QB G~GBA Register
Aa 111 -
Ab 110 B
Ac 101 A
Ad 011 T
Ba 111 -
Bb 110 B
Bc 101 A
Bd 011 T

Thus, during the number cycles of the QB sequence these registers are 
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selected for access.

• Clearing FRS=1 also asserts GCL~.

GCL~ asserts XYCL~, this holds X and Y in reset, so during the QB 
number-cycles the digits of the selected register are written back to core 
as 0.

GCL~ also asserts reset to the sign flags, so during the QB sequence, 
as the sign flag of the selected register is accessed it is cleared.

The QM Sequence Counter is reset in sync with ØN [16.1PL].

• End As QB returns to 0, the 0-edge of QBB resets FRS=0, terminating the 
Clear-General procedure.

DP Shift

Shifting the decimal point position requires the DP Counter be incremented or decremented, 
but as well, all 7 registers must be shifted up or down.  

• DP Counter The pressed shift-left or shift-right key enables the DP counter to count 
in the according direction,  left:up,  right:down.  On the assert  edge of 
EXEC, the DP counter is clocked.

• Shift sequencing The shifting of the registers is sequenced using the same facilities as the 
Clear-General procedure: the FRS flags and the QB Sequence Counter. 
FRS is set to a state indicating shift-left (FRS=3) or shift-right (FRS=2). 
The sequence of register selection differs from Clear-General:

QB G~GBA Register
Aa 111 -
Ab 110 B
Ac 101 A
Ad 100 IV
Ba 011 T
Bb 010 II
Bc 001 III
Bd 000 I

The FRS state asserts GSL~ for shift-left and GSRz~ for shift-right.  For 
shift-right, GSRz~ sets the ØD Counter to count down rather than up.

• Shifting The shifting is performed as described in the Registers section using the 
FGZ flag and X,Z leap-frogging.

Number Entry

Due to the fixed (but manually-set) decimal point, entry of a number must select between two 
sub-procedures when entering a numeral: one for integral digits and one for fractional digits.

• Start The pressed numeral key is encoded into BCD signals KN1,2,4,8. KNM 
is  asserted.   KNM  enables  flag  FEX  to  set  at  the  beginning  of  an 
upcoming number cycle. KNM also enables FEEN (Flag Entry Enable) 
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to be set by EXEC.  With FEEN set, flag FESH is released from reset to 
respond to it's assorted Set inputs.  FESH will be used to control the 
shifting up of integral digits and placement of the new numeral in the 
correct digit position.

• Register A new number is always entered into Register B.  If the current register 
FGBA is not B, when EXEC asserts, flag FECL is set 1 for one number 
cycle.  FECL asserts GGBA=B and loads FGBA=(GGBA=B).  GCL is 
asserted to clear RB during the number cycle.

• ? How is GCL distinguished in time from entry action?

• FKP flag The  FKP flag  distinguishes  entry  of  integral  versus  fractional  digits. 
Pressing of the DP key results in assertion of FKP.  FKP is cleared when 
some non-number key is pressed.

• Integral entry If the DP key has not been pressed, the existing digits to the left of the 
DP position (>DP) must be shifted up and the new numeral entered at 
digit DP+1.

• New numeral When EXEC is asserted, the Z Decade is loaded with the new numeral, 
though it is not yet in core.

• Shifting As the digit scanning proceeds up, X is being loaded from and written to 
core.   With  FKP=0,  when  ØD  increments  to  DP+1,  the  0-edge  of 
DP=ØD triggers FESH=1 [FESH.S2].

FESH assertion enables the shifting facility described in the Registers 
commentary.  The first numeral written to core is the new numeral in Z 
and the shift  leap-frogging proceeds for the remainder of the number 
cycle.

FESH is cleared at the end of the number cycle via clearing of FEEN 
[FEEN.R1,FESH.R4].

• Fractional entry For  fractional  digits,  there  is  no  need  for  shifting  of  digits,  the  new 
numeral must merely be appended to the end of the existing fractional 
digits.  The Tracking Counter will be used to maintain an indication of 
where this end is.

• Aligning TC TC must start at the DP position, that is, TC must be set equal to DP. 
When FEX is asserted due to pressing of the DP key, and FKP now 1 
but FEEN=0 (not a numeral  key),  if  TC≠DP a burst  of  ØM pulses is 
produced to clock TC [3.2PL], the burst being terminated when TC=DP.

• Adjusting TC The default counting state of TC is down [1.9Nd].  As fractional digits are 
entered, the 0-edge of FEEN triggers 3.1PL to decrement TC, and so 
track the end of the fractional digits.

• Entering new As with integral entry, the keypress numeral is loaded into Z.  As the digit 
scanning proceeds up, with FKP~=0, when TC=ØD, FESH is asserted 
[FESH.S1],  enabling the shift facility, and the new numeral in Z will be 
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written to memory.

In contrast to integral entry, FESH is promptly cleared at the end of the 
same digit period [FESH.R1], disabling the shift facility and the shifting 
up of subsequent digits.  The clearing of FESH also clears FEEN.

• ? Why are there inputs FESH.S3 & FESH.S4 ?

Negate

The Negate procedure is initiated by pressing of the Negative key.  The objective is simply to 
flip the sign flag of the current register.

• Flipping KNEG is asserted and a FEX/EXEC cycle initiated.  With KNEG~=0, the 
0-edge of EXEC~ triggers FCS=1.  The sign flag of the current register 
is then flipped as described in the Sign Flags commentary.

FCS is cleared via the gated-reset input at the end of the number cycle. 
Though KNEG~ may continue to enable the SG~ input  there are no 
further trigger edges from EXEC~.
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Programs
Nomenclature:

= Action performed by edge or pulse trigger.
<= Action performed by number cycle.
± Signed arithmetic cycle.
F Current register FGBA = { A, B, T, 1, 2, 3, 4 }

By example:

F = T FGBA is loaded with code for Register T.
RB <= R(F) Register referenced by FGBA is copied to Register B.
R(F) <+= RT Register T is added to register referenced by FGBA.
RT<< Register T is shifted left one digit.
F32<0 0-edge of F32 triggers action.

Notes:

• The program tables may not represent the finer timing relationships of triggerred actions.

• In program steps performing an arithmetic cycle there are occasions where the addend 
register is the same as the sum register.  This would suggest the register will be added to 
itself and its value doubled, however a doubling does not in fact occur.  During the digit cycles 
as X & Y are loaded from the same register, the 2nd read from core reads 0 because the core 
has been cleared and not yet restored. Thus, rather than R+R the operation is effectively R+0 
and leaves the register value unchanged.

• See also the IME-86S subroutine emulations (simple Python program).
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Program: AddA

Select: PEQ•N•PEQp

QM Action

1 RB <= R(F)

2 F = KeypressReg (via GFK~)

7 R(F) <±= RB

9 F = B

10 RA <= R(F)

11 RB <= 0

Add Addend.  Add a value to the EQ-keypress register.  For the EQ-general key, the target 
register is RT.

1: The addend in the current register is copied to RB.  If a new number was just 
entered and the current register is RB, this is effectively a null operation.

2,7: RB is added to the target register indicated by the keypress.
10: The addend now in RB is saved in RA.
9,11: RB is cleared and the current register set to RB.

Program: AddC

Select: PEQ•(N~)•PEQp

QM Action

1 RB <= R(F)

2 F = KeypressReg (via GFK~)

7 R(F) <±= RB

10 F = T

Add Complete.  A 2nd sequential keypress of EQ key(s) adds the current register to the EQ-
keypress register and the current register is set to T.
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Program: MP/DV Queue

Select: PMD•N

QM Action

9 RA <= RB

10 F = B

As the design uses infix key-sequencing, pressing MP or DV must be recorded so a later EQ 
keypress knows what is to be done.  The recording (queuing) is done in the FPb flags.  
Pressing the MP/DV keys also does some operand preparation:

9: The entered number N is copied to RA, to be the multiplier or divisor.
10: The current register is set to RB in readiness for entry of the next operand.

Program: Multiply

Select: PEQ•N•PMPp

QM Action

1 RB <= R(F)

2 F = KeyboardReg (via GFK~)

3 RT <= 0

6 BMP: RT <= RB•RA

7 R(F) <±= RT

9 R4 <+= RA   :if ModeS

10 F = T

With MP queued, pressing an EQ key executes this program to perform the multiplication.

1: The current register is copied to RB to be the multiplicand.
2: The current register is set to the EQ-keypress register.
3,6: T is cleared and the multiply performed.
7: If an EQ-Mx key is pressed the product in RT is added to the Mx register.  If 

the EQ-general key is pressed R(F) will be RT, but RT is not altered (see no-
double comment in Program Notes).

9: If the item-count mode is enabled, the multiplier in RA is added to R4.
10: T becomes the current register. 
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Program: Divide

Select: PEQ•N•PDVp

QM Action

1 RB <= R(F)

2 F = KeyboardReg (via GFK~)

3 RT <= 0

6 BDV: RT <= RB/RA

7 R(F) <±= RT

10 F = T

The program for EQ for a queued DV is nearly identical to that of MP.  There is no item-count.

Program: MP/DV Chain

Select: PMD•N•PMPp,
             PMD•N•PDVp

QM Action

1 RB <= R(F)

2 F = T

3 RT <= 0

6 BMP / BDV

9 RA <= RB

10 F = B

11 RB <= 0

?TODO
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Program: Raise Exponent 1,2,C

Select:  PMM•(N~)•(Nn~) Raise Exponent 1

QM Action

FNn = 0

1 F = A

2 RB <= R(F)

3 RT <= 0

5 R4 <= 0

6 BMP: RT <= RA•RB

7 R4 <+= 1

9 R4 <+= 1

11 F = 4

FNn = 1

Select:  PMM•(N~)•Nn Raise Exponent 2

QM Action

1 F = T

2 RB <= R(F)

3 RT <= 0

6 BMP: RT <= RA•RB

9 R4 <+= 1

11 F = 4

Select:  PEQ•(N~)•Nn Raise Complete

QM Action

1 RB <= R(F)

2 F = KeyboardReg (via GFK~)

5 R4 <= 0

7 R(F) <±= RT

9 F = T

The Raise programs are executed in combination to perform the Exponentiation operation.

• FNn Flag  FNn  is  used  to  initiate  the  sequence  of  multiplications  by 
distinguishing between the first (FNn=0) and subsequent multiplications 
(FNn=1).
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• Prior The Raise process actually begins when the first press of MP prepared 
for a multiplication (PMD•N). This left the base in A and cleared FNn=0.

• 1 - First The 2nd sequential  keypress of  the  MP key asserts  PMM•(N~).  Note 
PMP is also asserted.  With FNn=0, initialisation actions and the first 
multiplication are performed:

3,5: RT & R4 are cleared.  The result will build in RT.  R4 will be the 
exponent indicator.

6: At QM6, the first multiply is performed, leaving the square of 
the base in RT.

7,9: R4 is incremented to 2, indicating the squaring.

11: The 0-edge of QMC (end of QM11) sets FNn=1, indicating the 
Raise operation has been initialised.

• 2 - Subsequent On following presses of the MP key with FNn=1, a modified program is 
executed:

2: The result-so-far in RT is copied to RB to be the multiplicand. 
The original base remains in RA as the multiplier.

6: Another multiply is performed.

9: The exponent in R4 is incremented.

• C - Completion The exponent in R4 is copied to RB.  The result in RT is added or copied 
to the keypress register and the current register set to RT.

PMP is  asserted during this  program but  BMP invokation at  QM6 is 
suppressed [16.13.Nd].

The press of EQ or a non-MP operation key deasserts PMM•(N~), and 
FNn is cleared 0.
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Program: Square Root

Select: PSR•(N)

QM Action

1 R4 <= R(F)

2 RB <= 0

3 RT <= 0

5 RA <= 0

6 BSR: RT <= SQRT(R4)

9 F = T

The current register is copied to R4, other required registers cleared and the square root 
subroutine executed.  On return, the root is in RT.  The current register is set to RT.

Program: ?PostRoot

Select: PEQ•N•PRRp

QM Action

1 RB <= R(F)

2 F = KeyboardReg (via GFK~)

3 RT <= 0

7 R(F) <±= RB

9 F = B

10 RA <= R(F)

11 RB <= 0

Why?
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Subroutine: Multiply

Select: BMP

RA: multiplier

RB: multiplicand

RT:  product

QB Condition Action

QBEN TC = 0,  F31 = 0,  F32 = 0

* if F32=0 • DP=ØD•ØD15 F31 = 1,  F32 = 1

* if TC ROLL F31 = 0

* if F31=0 • F32=1 QB = N

* if F31=0 • F32=1 • TC=DP F32 = 0

0 Z = RA[0]

if TC=DP F31 = 1

1 loop while Z>0 RT <+= RB,  – –Z

if Z=0 • F31=1 • F32=0 RT[0] <+= 5  ?rounding

2 if F32=0 RT>>

if F32=1 RB<<

3 RA>>,  ++TC

if F31=1 @EON F32 = 1

N RB<<,  ++TC

return F32<–0 ++QM - continue Main

The multiply subroutine is executed at step 6 of the main sequence if PMP is asserted.

• Operands RA contains the multiplier, RB contains the multiplicand, the product will 
accumulate in RT.

• QB looping The QB sequence will loop, but the MSB of QB will be ignored, so it will  
be seen as (two iterations of) a 4-step loop. In each iteration, the LSD of 
RA (multiplier) will be processed and RA rotated right.

• Start The 1-edge of QBEN clears TC to 0 [8.8PP].  TC will be used a loop 
counter  to count  16  iterations through the QB loop.   F31 & F32 are 
released from reset.

• QB0 - Get LSD The LSD of RA (multiplier) is loaded into Z.  When TC=DP, F31 is set 1. 
F31  distinguishes  the  processing  of  fractional  digits  versus  integral 
digits.

• QB1 - Accumulate QB is halted and the step loops. On each iteration (number cycle), RB 
(multiplicand) is  added to RT (product)  and Z decremented.  When Z 
becomes 0, this sub-looping stops and the QB loop resumes.
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• QB2 - Shift If  fractional  digits  are being processed (F31=0),  the product  is  being 
reduced in magnitude, so RT is shifted down.  If integer digits are being 
processed (F31=1), the product is being increased, so the multiplicand 
RB is shifted up so it will accumulate in higher digits of the product.

• QB3 - Shift RA The multiplier is rotated right so the next higher digit becomes the LSD. 
The loop counter TC is incremented.  If TC<=15, the QB loop repeats.

• QB loop exit When 16 iterations are complete, TC rolls from 15 to 0.  The 0-edge of 
TC8  clears  F31=0.   With  F32=1  and  F31=0,  the  QB  sequence  is 
terminated by inhibiting and resetting QB [8.9NG].

• DP re-align However, QM is not yet re-enabled as F32 is still  1.  If RB has been 
shifted up, it is no longer aligned to the DP position.  In the following 
number cycles, RB continues to be rotated up (with wrap to the LSD), 
and TC incremented until  TC=DP.  This returns RB to its original DP 
alignment position.  TC=DP terminates this interim activity by clearing 
F32=0.

• Subroutine return The 0-edge of F32 kicks QM from 6 to 7, completing the subroutine and 
re-enabling the Main program.
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Subroutine: Divide

Select: BDV

RA:  dividend

RB:  divisor

RT:  quotient 

QB Condition Action

QBEN TC = 0,  F31 = 0,  F32 = 0

N loop while F31=0

   if F32=0 RB<<

   if F32=0 • ØD15 • X≠0 F31 = 1

   if F32=0 @EON ++TC

0

1 loop while FCS=0 RA <–= RB,
if FYC=1 (no borrow): ++Z

when FCS=1 RA <+= RB

2 RT<<, RT[0] = Z 

if F32=1 • TC=DP F31 = 0, QB = N

if ØD15 • DP=ØD F32 = 0

3 if F32=0 RB>>z

if F32=1 RA<<

if F31=F32 ++TC

if F31≠F32 – –TC

if F31=1 • TC>15 F32 = 1

N loop while F31=0

   if F32=1 RA>>z

   if F32=1 @EON – –TC

   if TC<0 F32 = 0

return F32<–0 ++QM - continue Main

• Phases The division  algorithm is  better  understood as  proceeding  through 4 
phases as elaborated in the table following.  These phases are defined 
by the F31 & F32 flags, and denoted here as a bit pair, e.g.:

Phase 01 == F31=0, F32=1

For the 1st and 4th of these phases, QB - though enabled by QBEN - is 
held in reset by F31=0 [8.10NG], execution thus loops at QBN.  These 
are a preparation and a cleanup phase.  The quotient is derived in the 
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2nd and 3rd phases.  The point in distinguishing the 2nd & 3rd phases is 
which operand will be shifted, due to the fixed DP position of the design.

Phase 00 Phase 10 Phase 11 Phase 01

QB TC up QB TC down QB TC up QB TC down

N
loop

RB<<, ++TC
till MSB≠0, then 
1=>F31.

0 - 0 - N
loop

RA>>, – –TC
till TC rolls from 0.1

loop
RA ±= RB 
Resolve new digit 
in Z.

1
loop

RA ±= RB 
Resolve new digit 
in Z.

2 RT<< + Z 2 RT<< + Z

3 RB>>, – –TC 3 RA<<, ++TC

• Phase 00 The dividend is shifted up to eliminate MSD zeroes. Execution loops at 
this step shifting the divisor up until a non-zero digit entering the MSD 
sets F31=1, finally activating QB.  For each shift, TC is incremented.

• Phase 10 & 11 When F31=1, QB can proceed through its sequence.  In these phases 
the QB sequence will loop, each loop producing a digit of the quotient. 
The sequence goes through 0 but with F31=1 no operation is performed.

The transition from phase 10 to 11 is marked by the setting of F32=1. 
This occurs when the decrementing TC rolls from 0 to 15 [F32.SK.1].

• Phase 10 TC counted up from 0 while divisor RB was shifted up in phase 00. 
During phase 10, TC counts back down to 0 while shifting RB down, 
returning RB to its original position.

• Phase 11 TC now  counts  up  again  and  as  new  quotient  digits  are  produced, 
dividend RA is shifted up.  When TC=DP all that can be produced has 
been  and  the  QB  sequence  loop  is  terminated  by  setting  F31=0, 
transitioning to phase 01.

This transition occurs at the end of step QB2 [F31.RK.2].  F31=0 resets 
QB and takes it to the QBN state, so the final QB3 step does not occur.

• QB1 - Resolve QBLP is asserted, so execution loops at this step.  During each number-
cycle iteration, the divisor is subtracted from the dividend by assertion of 
GASUB & GAAB [10.10NG].  If there is no borrow out of the subtraction 
(FYC=1), Z is incremented [8.2PL].

A borrow (FYC=0) indicates the divisor went negative.  The new quotient 
digit  has been resolved but the overdraft  must be corrected.  FYC=0 
sets FCS=1 which holds the borrow indication over the next number-
cycle.  With FCS=1, GAAB is asserted but GASUB is not [10.9NG], and 
so the divisor is added back to the dividend.

FCS=1 also deasserted QBLP, so QB proceeds to step 2 after the add-
back is complete.

• QB2 - Quotient Shift-left  is enabled for the quotient in RT [10.6NG].  In the shift  X-Z 
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leap-frog, Z is the first digit written to core, so the newly-resolved digit in 
Z is injected at the LSD of the quotient.  Z is cleared 0 at the end of shift 
number cycles [3.3PL].

• QB3 - Shift op The  divisor  RB  is  shifted  down  or  the  dividend  RA  is  shifted  up 
depending on the phase.

• Phase 01 With F32=1, rather than shifting RB up as in phase 00, the dividend RA 
is shifted down to bring it to back down to DP alignment.  TC is switched 
again to counting down and the phase is complete when TC rolls over 
from 0 to 15.  The rollover clears F32=0 [F32.RK.1].

• Subroutine return The 0-edge of F32 kicks QM from 6 to 7, completing the subroutine and 
re-enabling the Main program.
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Subroutine: Square Root

Select: BSR

R4: N

RA: reducing N dividend

RB: 2-increment divisor

RT:  root

QB Condition Action

QBEN TC = 0,  F31 = 1,  F32 = 0

* if DP=15: F32 = 1

* if DP=ØD•ØD=ODD: F31 = 0

* if TC ROLL: F32 = 0

0 RA<<

1 R4<<, RA[0] = R4[15]

2 if F31=0: RA<<

3 if F31=0: R4<<, RA[0] = R4[15]

4 RB<<, RB[0] = 1,  Fsr = 0

5 loop while FSC=0:

    if Fsr=0: RA <–= RB,  Fsr = 1

    if Fsr=1: RB <+= 2,  ++Z,  Fsr = 0

if FCS = 1: RA <+= B

6 RT<<, RT[0]=Z

if F32=1: ++TC

7 RB <–= 1

if TC=DP: F32 = 1

++TC

F31 = 0

0 return F32<0 ++QM - continue Main

• QB0::3 - Get pair Digits of N are processed in pairs from the MSD of N down.  N is in R4, 
the pair processing will be done from RA.  To transfer digits from R4 to 
RA,  RA is  shifted  up  first  (QB0,2)  leaving  the  LSD  empty.  This  is 
followed by shifting up R4 (QB1,3). As this number cycle ends, Z has 
been loaded with the MSD to be rotated down to the LSD. At this point 
(ØN),  the  single  register-code-bit  distinguishing  R4  from  RA  is 
deasserted to 1 [9.2NG],  switching from R4 to RA [9.6NG],  and Z is 
written to the LSD of RA.

• F31 The pairing boundary must be aligned to the DP, that is, the DP must not 
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be in the middle of a pair.  If the DPC value is even then the DP and 
register pairs are 'out-of-phase'.  To bring them into phase the first pair 
transfer will be just one digit from R4.

F31=0  will  indicate  the  pairing  is  in-phase.  At  the  beginning  of  the 
process, F31 is initialised to 1.  The DP is then tested and if odd (in-
phase) F31 is cleared 0.  At steps QB2,3, if F31=1 the shift-and-transfer 
are suppressed [9.10Nv].   Later,  in step QB7, F31 is set 0,  so in all 
subsequent sequence iterations two digits are transferred.

• QB4 - Shift op RB  is  shifted  up  and  1  added  [12.4NG].   The  +1  is  achieved  by 
incrementing Z to 1 at the beginning of the number cycle [12.3Nv], which 
will then be loaded into the RB LSD at the beginning of the Shift-Left.

• QB5 - Resolve This step loops to resolve a new digit of the root - QBLP is asserted.  In 
each iteration RB will be subtracted from RA [12.7NG].  If the result is 
positive (FCS=0), 2 is added to RB, Z incremented and execution loops 
[12.9NG]. This can require two number cycles for each loop iteration. 
Flag  Fsr  alternates  in  each  iteration  to  distinguish  the  two  number 
cycles, Fsr=0: subtract, Fsr=1: add & increment.

If RA went negative in the subtraction [FCS=1], the loop is terminated 
[12.10NG].   A final  number  cycle  in  QB5 is  executed  to  correct  the 
overdraft by adding RB back to RA.

• QB6 - Shift  root The building root RT is shifted up with the new digit in Z injected into the 
LSD [9.4NG]. 

TC is also incremented if processing the integer portion of the radicand 
(F32=1).   The produces a double-increment  of  TC for  integral  digits, 
accounting for the halved magnitude of the root relative to the radicand.

• QB7 1 is subtracted from RB.  TC is incremented. If TC is passing the DP 
position (processing is moving to the integral digits), F32 is set 1.

• Subroutine return When TC rolls over from 15 to 0, due to the increment in either QB6 or 
QB7,  F32 is  cleared  0.   The 0-edge of  F32 kicks  QM from 6  to  7, 
completing the subroutine and re-enabling the Main program.

• (?) The QBa input to 12.3Nv appears superfluous.
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	Timing
	A timing diagram for the major clock signals is presented on [logic.21].
	• Master clock Timing begins with an astable flip-flop operating at ~ 89 KHz generating signal ØM.
	• Digit period The master clock triggers a 4-bit binary ripple counter: the ØC Counter [FC1,2,4,8]. The 16-count cycle produced by this counter constitutes a digit cycle or period (ØD) during which a digit of a number is processed.
	The 16 ØM pulses occurring in a digit cycle are used to trigger various actions. The primary aspect of the digit cycle is to read a digit of each of two operands from core, optionally perform arithmetic with them, and restore them to core:
	ØGS alternates in-between the two pulses of ØR and ØW to distinguish the selection of the two operand registers.
	• Digit-of-number The 0-edge of FC8 represents the end of one digit and the beginning of another. This edge clocks another 4-bit binary ripple counter: the ØD Counter [FD1,2,4,8]. The 16 states of this counter define the digits of a number, from ØD0 (LSD) to ØD15 (MSD) to constitute a number cycle.
	• Up/down The ØD Counter can count up or down, so can scan or process a number from LSD to MSD or MSD to LSD. The default counting direction is up, LSD to MSD [29.10Nv].
	• ØN A 5th flip-flop [FØN] in the ØD Counter pauses the clocking of the counter for one digit period (ØN) at the end of number cycles. The ØD Counter is 0 during ØN.
	Digit Memory (Core)
	• Encoding The digits are encoded in standard 4-bit 1248 BCD code.
	• Physical The core memory is physically organised in a 2D planar array of 16 • (8 • 4).
	• Logical Logically, the core memory is a 3D array of 8 registers, by 16 digits/register, by 4 bits/digit. However, of the 8 register planes, only 7 are used - the 8th is spare.
	• Electrical Electrically, the form is what was referred to in the era of core memory as "2-1/2 D".
	In the common 3-Dimensional form of core memory, 2D half-current addressing is used, with the 3rd dimension of bit-arrays sharing 2 sets of address drivers for the wires on both axes of the bit-arrays. Each bit-array has a 3rd inhibit wire to distinguish between bits, and the sense function is performed with a fourth wire for each bit-array, or in later designs inhibit and sense share a 3rd wire.
	In the 2-1/2D form, 2D half-current addressing is used with a set of address drivers/wires shared on only one axis. On the other axis each bit-array has an independant set of drivers/wires with the drivers of each set having a common gating input to distinguish control of the bits.
	This 2-12D form requires more drivers than 3D but simplifies the threading of the cores.
	• Shared sense With the 2-1/2D form, a separate sense wire may be avoided. Rather, sensing can be accomplished using the address wires of the independant axis. This is made feasible by differentiating the timing of the address pulses on the two axes.
	In the IME86, the register/row wires are used for both addressing and sensing. During a Read of core, read current on the register/row wires is enabled for period ØRL which is longer than the period of ØR used for the digit/column wires. The magnetic flip which will produce the sense pulse is triggered by ØR on the digit/column wires. These wires are orthogonal to the register/row wires which are observed for the sense pulses, so the magnetic field of the triggering pulse has minimal inductive influence on the register wires and the small sense pulses remain distinguishable from the triggering pulse.
	• Double winding The row and column wires are threaded through the cores twice, having been looped back underneath the core mat. This permits halving the current requirement of the drivers in achieving the needed magnetic influence, as well as doubling the sense pulse level into the sense amplifiers.
	• Drive supply Core requires bidirectional current drive through the cores, one direction for clear/read, one for set/write. This is accomplished in the IME 86 in a novel manner with the single –12V supply. The address wires all have one end connected to a common point held at –6V. The drivers then can switch the other end to – 12V for one direction (clear/read) and to ground for the other direction (set/write).
	The –6V however, is derived not from a typical dropping of the –12V supply, but by what amounts to a charge pump driven by the core accesses.
	In the calculator application, the core accesses follow a persistent and regular pattern. A capacitor [1000µF on V–6] between the –6V common point and GND serves as the store for the charge pump. During the clear/read accesses the driver end of address wires is taken to V–12 and current flows in one direction through the wires to charge the capacitor. During the set/write accesses the driver end is taken to GND and current flows in the other direction, discharging the capacitor. A write always promptly follows a read so there is a near balance between charge and discharge of the capacitor. Imbalance however, results from:
	Both of these present an imbalance in favor of charging. To compensate, a shunt regulator [TP.7] controlled by differential pair [TP.5,6] is applied across the capacitor to bleed off excess charge and maintain the core common point at –6V.
	Registers
	• Code Registers are identified internally by a 3-bit code:
	Note the coding here uses the 0-assert values. Nearly all the register-code signalling is done with these values.
	The coding was chosen such that the values with only one zero bit are applied to the A, B & T registers. These registers are frequently referenced in the micro-programs, the single zero bit reduces the number of diodes needed for their referencing.
	• Access At any given instant, one register can be accessed. Accessing a register means a digit of that register will be read or written during a core memory operation (single pulse of ØR or ØW). There are two sources for selection of the register to be accessed:
	• the GAA~,BB~,GG~ signals (collectively GGBA),
	• the 3 current-register flags FAA,BB,GG (collectively FGBA) [logic.17]. The current-register is the register being displayed.
	By default, the register selected for access is the current-register (FGBA). The selection is switched to GGBA by assertion of GSEL [19.15Nv] which is subject to a variety of conditions.
	• GGBA The GGBA signals are generated on demand by the procedure logic to access a specific register.
	• FGBA The FGBA current-register flags can be loaded from either:
	• the keyboard when the user selects a register for display,
	• procedure logic such as for automatic selection of the T register for display at the completion of an operation.
	• Decoding The 3-bit register code is partially decoded to a major-minor 1-of-2 & 1-of-4 code [GMx]. These signals are used to select both the register digits in core and the register sign flag. Further decoding to the individual register is done in the core drivers and sign flags.
	• Shifting The digits of a register need to be shifted up or down in several procedures. A shared facility performs this, involving the FGZ flag and the X & Z Decades.
	• Enable Shifting is enabled by the shift signals GSL (left), GSR (right), and FESH for numeral-entry. These assert GSH [3.4Nv].
	FGZ by default is held in reset, and released from reset by GSH=1. Once thus enabled, FGZ toggles at ØA1 which occurs in the digit cycle between the read and write of core.
	• Leap-frog In the next digit period, Z will be loaded from core, FGZ toggled to 0, and X written to core. This leap-frogging with X & Z shifts the digit contents, continuing till GSH is deasserted.
	• Direction The shift direction is determined by the count direction of the ØD Counter. ØD counts up by default, producing a left shift. GSR assertion changes the ØD count direction to down for right shift.
	• Fill Shift-Right may either zero-fill the MSD (GSRz) or recirculate the LSD into the MSD (GSRc). When shifting right, the first digit period is ØD0, and ØDC then decrements to ØD15. For GSRc, this moves the LSD into the MSD. For GSRz, the write pulse in ØD15 is suppressed [29.9NG]. The last digit write of moving digit 1 to digit 0 takes place during the ØN period when ØDC=0.
	• Transfer Some procedures require copying the contents of the current register to another register. This is performed by asserting GTR for a number cycle:
	In consequence, during a digit cycle:
	For sign transfer, FSQ is loaded with the sign of the FGBA register (ØGS=0). With GTR asserted, the FSQ outputs are gated to SETN and RESETN when ØGS=1, loading the GGBA sign with the FSQ value.
	Sign Flags
	• Addressing The sign flags are addressed by the same GMx signals used for addressing the register's digits in core memory.  The addressed sign flag becomes the target for modification by the SETN & RESETN signals, and becomes the source for the signal SN.
	• Operand signs For operations involving multiple registers - where the register selection changes over the course of the operation - two further flags are used to hold the signs of the registers at issue [FSP,FSQ].
	For signed arithmetic operations, FSP & FSQ are XOR'd to see if they differ.  If they do differ, GASUB is asserted [4.6Nv] and subtraction is performed rather than addition.
	• Change sign The FCS flag detects and holds whether the result of a subtraction produced a negative result. At the end of a subtract (GASUB~=0) number cycle, if a borrow from the last digit is present (FYC=0), the 0-edge of ØN sets FCS=1.
	FCS is also set by a pressing of the Negative key.
	With FCS=1, during ØN, FSP and FSP~ are gated to signals RESETN & SETN respectively - note the inversion. FSP was earlier loaded with the sign of the current register. During the ØW pulse(s) of ØN, these signals are gated through to set or reset the sign of the current register, thus flipping the sign.
	Digit Decades X,Y,Z
	• X & Y During add/subtract number cycles, X and Y hold a digit from each of the two operand registers. Both X & Y are wired as decade counters to serve this end. X is also used for shifting register digits and the multiplex display scanning.
	• Z The Z Decade is actually wired simply as a binary counter. It is used for shifting register digits, holding a numeral entered from the keyboard, and as a counter in resolving new digits during the MP/DV/SR procedures.
	• Selection At any instant one of the three Decades is selected for loading-from and writing-to core memory. By default, the X Decade is selected [GX]. The assertion of either GY or GZ deselects X and switches the selection to the according Y or Z. Z is primarily selected for register-shift operations.
	• 2 operands Y is selected in 2-operand arithmetic operations. As with the Registers where ØGS is used to switch the accessed Register, so is ØGS used to switch the selected Decade. Assertion of GXY enables the switching of the selection. X is selected during the 1st of the ØR and ØW pulses, while Y is selected during the 2nd ØR and ØW pulses.
	Arithmetic & the Digit Cycle
	• Reading A digit of the two operand registers must first be loaded from core into the X & Y Decades.
	At the beginning of the digit period, X & Y are cleared by the brief pulse of ØPCL [30.12PH]. The 1st pulse of ØR then triggers a core read. Sense pulses from the bits of the digit being read 1-set the flip-flops of X. The 2nd pulse of ØR triggers a core read from the other operand register to 1-set the flip-flops of Y.
	The selection between the two operand registers being read, and X versus Y being loaded, is controlled by ØGS and other control signals. ØGS toggles state between the two ØR pulses to change the selection.
	• Add By example, given X=7 and Y=5. An operation condition enables the arithmetic logic [5.12Nv]. When ØA begins, FXR is released from reset.
	During ØA, gate XINC is enabled to allow 10 pulses of ØM through to increment X. X will roll over after 3 pulses, the rollover triggers FXR=1.
	With FXR=1 and GASUB=0 (add), the gate YINC is enabled to allow ØM pulses to increment Y. ØA ends after another 7 pulses, setting FXR=0 and disabling incrementing of Y.
	The net result when ØA ends is:
	• X returns to its initial value of 7 having been incremented 10 times.
	• Y has been incremented 7 times from 5, rolling over and ending at 2.
	• The rollover of Y has set the Carry Flag FYC=1.
	• Carry-in If there is a carry-in (FYC=1) from the previous digit, Y is incremented during ØA1. This does not conflict with the FXR-gated increments because FXR will be enabled at the earliest at the 2nd pulse of ØA (X=9).
	FYC is cleared at the end of ØA1, so is ready for a carry generation from the current digit, and again, prior to occasion for conflict.
	• Subtract For subtraction, GASUB=1. During ØA, the behaviour of X is the same.
	However, incrementing of Y is now enabled while FXR=0 with the exception of ØA1 [5.11Nd] - thus from the 2nd pulse of ØA till the X rollover. The exception is tied up with the borrow strategy.
	• Borrow A borrow necessitates one less increment of Y. The ØA1 exception produces this borrow by default. As the carry flag produces an increment of Y, if the carry flag is set such that its assertion indicates the lack of need for borrow, the carry increment will compensate for the default borrow.
	When subtracting, rollover of Y indicates no borrow is necessary. For example, for (5–2): Y=5,X=2, the 5 will be incremented 8 times producing Y=3 and FYC=1. FYC is as desired for providing the compensating increment to the next digit. For (5-6): Y=5,X=6, the 5 will be incremented 4 times producing Y=9 and FYC=0. With FYC=0, the default borrow is effective in the next digit.
	An initial increment of Y is generated for the first digit, this compensates for the missing increment in that digit.
	• Writing After ØA completes, the two pulses of ØW restore the X digit to one operand register - necessary due to the destructive read of core - and writes the modified Y digit to the other operand register. ØGS again alternates between the two pulses to change the register and Decade accessed.
	DP Counter
	• Value The value in DPC corresponds to the tenths digit, not the units digit. If the DP position is set to one fractional digit, DPC=0, as the LSD digit is processed and displayed during ØD0. If the display is all digits integral, DPC=15.
	• Comparator The value of DPC is continuously compared to the ØD Counter. When they are equal, signal DP=ØD is asserted. This is used, in part, to turn on the appropriate DP lamp in the display as the display is being multiplexed.
	Tracking Counter
	The Tracking Counter (TC) is another 4-bit binary up-down ripple counter. It serves for two uses:
	• Tracking the digit position during the Numeral-Entry procedure after the DP key has been pressed.
	• As a loop counter to track progress during the MP/DV/SR procedures.
	Procedure-specific operation of TC is covered in more depth in the according procedure description.
	• Comparator Like DPC, the value of TC is continuously compared to the ØD Counter. When they are equal, signal TC=ØD is asserted.
	• TC=DP A further comparison signal of TC and DPC is generated. During a number cycle, if TC, DP and ØD all become equal, FSC3 is set 1 asserting TC=DP. This occurs at the end of the digit period when they were all equal. TC=DP remains asserted until the beginning of the next number cycle when FSC3 is cleared 0.
	Execution Elements
	Procedures & Programs
	Procedure Selection
	Procedure Enable & Execution
	• State transition State transitions or steps in a procedure are triggerred by the 0-edge of ØN. The ØN period then, comes at the end of a state cycle, and state cycles are synchronous to the number cycle. A register operation is an atomic event at this level.
	Numerous actions are triggered by or in consequence of the 0-edge of ØN: the EXEC flag, the procedure selection flags, the QM & QB Counters, the F31 & F32 phase flags, the Tracking Counter, etc.
	Program Sequence Counters
	The QM and QB Counters control sequencing of the Programmed procedures.
	As counters, they follow a fixed sequence. The decoded output steps of these counters are gated with the procedure-select and other signals to determine the actions performed at a given step. This contrasts with a more-canonical state-machine design with next-state logic producing a variable sequence of states.
	• QM - Main QM is a 4-bit binary counter providing 16 steps or states. The 16 states are decoded first from binary to two 1-of-4 sequences, a Major (QMA::D), and a minor (QMa::d). These major-minor sequences are then further decoded as necessary to arrive at a unique 1-of-16 state (QM00::15), an example being the QM=0 AND gate at the gating input of [16.4PL].
	QM is the main control for arithmetic procedures. QM normally sits in its idle 0 state. When EXEC asserts for a programmed procedure, QM is incremented to 1 [16.2PL]. QM≠0 enables QM to be incremented on each number cycle [16.4PL].
	The QM sequence does not loop - for main programs the sequence is traversed only once. The sequence ends when QM rolls over to 0.
	• QB - Subroutine QB is a 3-bit binary counter. QB is decoded in a Major-minor 1-of-n scheme similar to that of QM. QB is used to execute a sub-program in the course of the main program. There are 3 sub-programs: BMP, BDV & BSR.
	• QB - BMP/BDV The BMP & BDV subroutines are short enough that they do not require the 3rd QB bit. Only the QBa,b,c,d signals are used, providing 4 steps, referred to as QB0::3.
	There is however, a 5th state that occurs when the counter is held in reset and QBa is suppressed from asserting. This state will be referred to as QBN. QBN does not have an explicit signal, it is distinguished by none of the QB-minor signals asserting.
	• QB - BSR The BSR subroutine requires 8 steps, the 3 bits of QB are decoded to 8 steps QB0::7. The QBN state is not used.
	• QB - ancillary use QB is also used to generate a register-selection sequence during the Clear-General and DP-Shift procedures.
	• QB activity During MP/DV/SR, one of the operation signals PMP,PDV,PSR is asserted. At step QM6 in the main sequence, gating enables one of the sub-procedure signals BMP,BDV,BSR to assert [16.10,11,12Nv].
	This latter assertion has two effects:
	• QM is halted by disabling the ØN pulses to [16.4PL].
	• QBEN is asserted [8.7Nv]. This enables QB, though it may not yet be active if being held in the QBN state. When activated, the counter is released from reset and increments on each number cycle.
	Incrementing of QB can be stopped at some step by the assertion of QBLP. Number cycles continue to be performed so execution loops at that step till QBLP is deasserted.
	The QBN state is used in the BMP/BDV subroutines for preparatory and/or cleanup activity [8.9NG,8.10NG]. The QB sequence may be terminated early by taking it to the QBN state.
	• QB seq. looping During MP/DV/SR, the QB sequence loops (repeatedly passes through QB0) until flag F32 deasserts to produce a pulse [16.3PL] to increment QM from 6 to 7. QM≠6 deasserts the sub-procedure signals, deasserting QBEN and resetting and disabling QB, and re-enables ØN incrementing of QM, allowing the main program to proceed.
	Programming Logic
	The micro-code for the programs is implemented with diodes forming NORN and OR gates. This can be construed into matrices as the presentation in the logic schematic illuminates to some degree, though there is no such matrix readily visible in the implementation.
	Simple Procedures
	Idle
	Display Select
	Display-Select is executed to set which register is displayed in the Nixies.
	• Start The register-select keypress is encoded to KGG,BB,AA (collectively KGBA) and KMEM asserted [logic.6]. KMEM assertion triggers a FEX/EXEC cycle.
	• Load FGBA EXEC assertion generates a pulse to clear FGBA [19.1PL]. With FEX asserted, the 0-edge of ØN pulses after the clear generate pulse(s) to set the FGBA bits from KGBA.
	Clear General
	• Select When EXEC is asserted, FRS is loaded with 1, selecting the Clear-General procedure for execution. FRS≠0 asserts QBEN.
	• Sequence QBEN being asserted releases QB from reset, enabling it to increment on every number cycle. QB proceeds through its 8 steps. As it does so, its sequence signals QBxx are encoded into a register-selection code:
	Thus, during the number cycles of the QB sequence these registers are selected for access.
	• Clearing FRS=1 also asserts GCL~.
	GCL~ asserts XYCL~, this holds X and Y in reset, so during the QB number-cycles the digits of the selected register are written back to core as 0.
	GCL~ also asserts reset to the sign flags, so during the QB sequence, as the sign flag of the selected register is accessed it is cleared.
	The QM Sequence Counter is reset in sync with ØN [16.1PL].
	• End As QB returns to 0, the 0-edge of QBB resets FRS=0, terminating the Clear-General procedure.
	DP Shift
	• DP Counter The pressed shift-left or shift-right key enables the DP counter to count in the according direction, left:up, right:down. On the assert edge of EXEC, the DP counter is clocked.
	• Shift sequencing The shifting of the registers is sequenced using the same facilities as the Clear-General procedure: the FRS flags and the QB Sequence Counter. FRS is set to a state indicating shift-left (FRS=3) or shift-right (FRS=2). The sequence of register selection differs from Clear-General:
	The FRS state asserts GSL~ for shift-left and GSRz~ for shift-right. For shift-right, GSRz~ sets the ØD Counter to count down rather than up.
	• Shifting The shifting is performed as described in the Registers section using the FGZ flag and X,Z leap-frogging.
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